StrongIRFET™ IRF7483MTRPbF DirectFET® N-Channel Power MOSFET Application Brushed Motor drive applications BLDC Motor drive applications Battery powered circuits Half-bridge and full-bridge topologies Synchronous rectifier applications Resonant mode power supplies OR-ing and redundant power switches DC/DC and AC/DC converters DC/AC Inverters VDSS 40V RDS(on) typ. 1.7m max 2.3m ID (Silicon Limited) 135A S Benefits Improved Gate, Avalanche and Dynamic dv/dt Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dv/dt and di/dt Capability Lead-Free, RoHS Compliant Base part number D S DirectFET® ISOMETRIC Orderable Part Number Form Quantity Tape and Reel 4800 IRF7483MTRPbF 150 ID = 81A 125 5.0 ID, Drain Current (A) RDS(on), Drain-to -Source On Resistance (m) DirectFET MF S MF 6.5 3.5 TJ = 125°C 2.0 100 75 50 25 TJ = 25°C 0.5 0 4 6 8 10 12 14 16 18 20 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage 1 G Standard Pack Package Type ® IRF7483MPbF S D www.irf.com © 2015 International Rectifier 25 50 75 100 125 150 TC , Case Temperature (°C) Fig 2. Maximum Drain Current vs. Case Temperature Submit Datasheet Feedback May 14, 2015 IRF7483MTRPbF Absolute Maximum Ratings Symbol Parameter ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited) Pulsed Drain Current IDM PD @TC = 25°C Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage VGS Operating Junction and TJ Storage Temperature Range TSTG Avalanche Characteristics EAS (Thermally limited) Single Pulse Avalanche Energy EAS (Thermally limited) Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value EAS (tested) IAR Avalanche Current EAR Repetitive Avalanche Energy Thermal Resistance Symbol Parameter Junction-to-Ambient RJA Junction-to-Ambient RJA Junction-to-Ambient RJA Junction-to-Case RJC Junction-to-PCB Mounted RJ-PCB Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS Drain-to-Source Breakdown Voltage V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage IDSS Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance RG Notes: Mounted on minimum footprint full size board with metalized back and with small clip heatsink. Used double sided cooling , mounting pad with large heatsink. Surface mounted on 1 in. square Cu board (still air). 2 www.irf.com Units A W W/°C V °C 69 152 147 mJ See Fig.15,16, 23a, 23b A mJ Typ. ––– 12.5 20 ––– 1.0 Max. 60 ––– ––– 1.7 ––– Units °C/W Min. Typ. Max. Units Conditions 40 ––– ––– V VGS = 0V, ID = 250µA ––– 32 ––– mV/°C Reference to 25°C, ID = 1.0mA ––– 1.7 2.3 VGS = 10V, ID = 81A m ––– 3.4 ––– VGS = 6.0V, ID = 41A 2.2 3.0 3.9 V VDS = VGS, ID = 100µA ––– ––– 1.0 VDS = 40V, VGS = 0V µA ––– ––– 150 VDS = 40V, VGS = 0V, TJ = 125°C ––– ––– 100 VGS = 20V nA ––– ––– -100 VGS = -20V ––– 1.2 ––– TC measured with thermocouple mounted to top (Drain) of part. Mounted to a PCB with small clip heatsink (still air) © 2015 International Rectifier Max. 135 86 540 74 0.59 ± 20 -55 to + 150 Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) Submit Datasheet Feedback May 14, 2015 IRF7483MTRPbF Dynamic @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units Conditions gfs Forward Transconductance 125 ––– ––– S VDS = 10V, ID = 81A Qg Total Gate Charge ––– 81 ID = 81A Qgs Gate-to-Source Charge ––– 21 ––– VDS =20V nC Qgd Gate-to-Drain ("Miller") Charge ––– 28 ––– VGS = 10V Qsync Total Gate Charge Sync. (Qg - Qgd) ––– 53 ––– ID = 81A, VDS =0V, VGS = 10V td(on) Turn-On Delay Time ––– 15 ––– VDD = 20V tr Rise Time ––– 53 ––– ID = 30A ns td(off) Turn-Off Delay Time ––– 39 ––– RG = 2.7 tf Fall Time ––– 25 ––– VGS = 10V Ciss Input Capacitance ––– 3913 ––– VGS = 0V Coss Output Capacitance ––– 642 ––– VDS = 25V Crss Reverse Transfer Capacitance ––– 431 ––– pF ƒ = 1.0MHz Coss eff. (ER) Effective Output Capacitance (Energy Related) ––– 765 ––– VGS = 0V, VDS = 0V to 32V Coss eff. (TR) Effective Output Capacitance (Time Related) ––– 932 ––– VGS = 0V, VDS = 0V to 32V Diode Characteristics Symbol Parameter IS Continuous Source Current (Body Diode) ISM Pulsed Source Current (Body Diode) Diode Forward Voltage VSD dv/dt Peak Diode Recovery trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Reverse Recovery Current Min. Typ. Max. Units Conditions MOSFET symbol ––– ––– 74 showing the A integral reverse ––– ––– 540 p-n junction diode. ––– ––– 1.2 V TJ= 25°C,IS = 81A, VGS = 0V D G S ––– 2.4 ––– ––– ––– ––– ––– ––– 38 39 42 46 1.9 ––– ––– ––– ––– ––– TJ =150°C,IS = 81A, VDS = 40V TJ = 25° C VR = 34V, ns TJ = 125°C IF = 81A TJ = 25°C di/dt = 100A/µs nC TJ = 125°C A TJ = 25°C V/ns Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.021mH RG = 50, IAS = 81A, VGS =10V. ISD ≤ 81A, di/dt ≤ 839A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C. Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. 3 www.irf.com © 2015 International Rectifier Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note # AN-994. http://www.irf.com/technical-info/appnotes/an-994.pdf R is measured at TJ approximately 90°C. This value determined from sample failure population, starting TJ = 25°C, L= 0.021mH, RG = 50, IAS = 81A, VGS =10V. Limited by TJmax, starting TJ = 25°C, L = 1mH RG = 50, IAS = 17A, VGS =10V. Submit Datasheet Feedback May 14, 2015 IRF7483MTRPbF 1000 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 100 BOTTOM 10 4.5V BOTTOM 100 4.5V 60µs PULSE WIDTH 60µs PULSE WIDTH Tj = 25°C Tj = 150°C 1 10 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) 100 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current(A) 10 Fig 4. Typical Output Characteristics 1000 TJ = 150°C 100 TJ = 25°C 10 VDS = 10V 60µs PULSE WIDTH ID = 81A VGS = 10V 1.5 1.0 0.5 0.0 1.0 2 3 4 5 6 7 -60 -40 -20 0 8 Fig 5. Typical Transfer Characteristics 100000 Fig 6. Normalized On-Resistance vs. Temperature 14.0 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd 10000 Ciss Coss Crss 1000 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) 1 VDS, Drain-to-Source Voltage (V) Fig 3. Typical Output Characteristics ID= 81A 12.0 VDS = 32V VDS = 20V 10.0 8.0 6.0 4.0 2.0 0.0 100 0.1 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage 4 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP www.irf.com © 2015 International Rectifier 0 20 40 60 80 100 QG, Total Gate Charge (nC) Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage Submit Datasheet Feedback May 14, 2015 IRF7483MTRPbF 10000 100 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 TJ = 150°C 10 TJ = 25°C 1 VGS = 0V 0.4 0.5 0.6 0.7 0.8 0.9 1000 100µsec 100 10 1msec DC 1 10msec Tc = 25°C Tj = 150°C Single Pulse 0.1 0.01 0.1 0.3 OPERATION IN THIS AREA LIMITED BY R DS(on) 0.1 1.0 1 Fig 10. Maximum Safe Operating Area Fig 9. Typical Source-Drain Diode Forward Voltage 0.6 48 Id = 1.0mA 0.5 46 0.4 45 Energy (µJ) V(BR)DSS, Drain-to-Source Breakdown Voltage (V) 100 VDS , Drain-to-Source Voltage (V) VSD , Source-to-Drain Voltage (V) 47 10 44 43 0.3 0.2 42 41 0.1 40 0.0 39 -60 -40 -20 0 -5 20 40 60 80 100 120 140 160 TJ , Temperature ( °C ) 5 10 15 20 25 30 35 40 45 VDS, Drain-to-Source Voltage (V) Fig 12. Typical Coss Stored Energy Fig 11. Drain-to-Source Breakdown Voltage RDS (on), Drain-to -Source On Resistance (m) 0 10 VGS = 5.5V VGS = 6.0V VGS = 7.0V VGS = 8.0V VGS = 10V 9 8 7 6 5 4 3 2 1 0 0 25 50 75 100 125 150 175 200 ID, Drain Current (A) Fig 13. Typical On-Resistance vs. Drain Current 5 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback May 14, 2015 IRF7483MTRPbF Thermal Response ( Z thJC ) °C/W 10 1 D = 0.50 0.20 0.10 0.05 0.1 0.02 0.01 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case Avalanche Current (A) 1000 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 125°C and Tstart =25°C (Single Pulse) 100 10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 125°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Avalanche Current vs. Pulse Width 80 TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 81A EAR , Avalanche Energy (mJ) 70 60 50 40 30 20 10 0 25 50 75 100 125 150 Starting TJ , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature 6 www.irf.com © 2015 International Rectifier Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1.Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC Iav = 2T/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Submit Datasheet Feedback May 14, 2015 IRF7483MTRPbF 4.5 8 4.0 7 IF = 54A VR = 34V 6 TJ = 25°C TJ = 125°C 3.5 3.0 IRRM (A) VGS(th), Gate threshold Voltage (V) ID = 100µA ID = 250µA 5 4 ID = 1.0mA 2.5 3 ID = 1.0A 2.0 2 1.5 1 -75 -50 -25 0 25 50 75 100 125 150 100 200 TJ , Temperature ( °C ) 400 500 600 diF /dt (A/µs) Fig 17. Threshold Voltage vs. Temperature Fig 18. Typical Recovery Current vs. dif/dt 160 8 7 IF = 81A VR = 34V 140 IF = 54A VR = 34V 6 TJ = 25°C TJ = 125°C 120 TJ = 25°C TJ = 125°C QRR (nC) IRRM (A) 300 5 4 100 80 3 60 2 40 20 1 100 200 300 400 500 100 600 200 300 400 500 600 diF /dt (A/µs) diF /dt (A/µs) Fig 20. Typical Stored Charge vs. dif/dt Fig 19. Typical Recovery Current vs. dif/dt QRR (nC) 160 140 IF = 81A VR = 34V 120 TJ = 25°C TJ = 125°C 100 80 60 40 20 100 200 300 400 500 600 diF /dt (A/µs) Fig 21. Typical Stored Charge vs. dif/dt 7 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback May 14, 2015 IRF7483MTRPbF Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS tp 15V DRIVER L VDS D.U.T RG + V - DD IAS 20V tp A I AS 0.01 Fig 23a. Unclamped Inductive Test Circuit Fig 23b. Unclamped Inductive Waveforms Fig 24a. Switching Time Test Circuit Fig 24b. Switching Time Waveforms Id Vds Vgs VDD Vgs(th) Qgs1 Qgs2 Fig 25a. Gate Charge Test Circuit 8 www.irf.com © 2015 International Rectifier Qgd Qgodr Fig 25b. Gate Charge Waveform Submit Datasheet Feedback May 14, 2015 IRF7483MTRPbF DirectFET® Board Footprint, MF Outline (Medium Size Can, E-Designation) Please see DirectFET® application note AN-1035 for all details regarding the assembly of DirectFET®. This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D D G S S S D D Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback May 14, 2015 IRF7483MTRPbF DirectFET® Outline Dimension, MF Outline (Medium Size Can, E-Designation) Please see DirectFET® application note AN-1035 for all details regarding the assembly of DirectFET®. This includes all recommendations for stencil and substrate designs. DIMENSIONS CODE A B C D E F G H J J1 K L M N P METRIC MIN MAX 6.25 6.35 4.80 5.05 3.85 3.95 0.35 0.45 0.58 0.62 1.08 1.12 0.93 0.97 1.28 1.32 0.38 0.42 0.58 0.62 0.88 0.92 2.08 2.12 0.59 0.70 0.02 0.08 0.08 0.17 IMPERIAL MIN MAX 0.246 0.250 0.189 0.199 0.152 0.156 0.014 0.018 0.023 0.024 0.043 0.044 0.037 0.038 0.050 0.052 0.015 0.017 0.023 0.024 0.035 0.036 0.082 0.083 0.023 0.028 0.0008 0.003 0.003 0.007 Dimensions are shown in millimeters (inches) DirectFET® Part Marking LOGO GATE MARKING PART NUMBER BATCH NUMBER DATE CODE Line above the last character of the date code indicates "Lead-Free" Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback May 14, 2015 IRF7483MTRPbF DirectFET® Tape & Reel Dimension (Showing component orientation). LOADED TAPE FEED DIRECTION NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF7483MTRPBF). For 1000 parts on 7" reel, order IRF7483MTR1PBF NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MAX MIN MAX 0.311 0.319 7.90 8.10 0.154 0.161 3.90 4.10 0.469 0.484 11.90 12.30 0.215 0.219 5.45 5.55 0.201 0.209 5.10 5.30 0.256 0.264 6.50 6.70 0.059 N.C 1.50 N.C 0.059 0.063 1.50 1.60 REEL DIMENSIONS TR1 OPTION (QTY 1000) STANDARD OPTION (QTY 4800) IMPERIAL IMPERIAL METRIC METRIC MIN MAX MIN CODE MAX MIN MIN MAX MAX 6.9 N.C 12.992 A N.C 177.77 330.0 N.C N.C 0.75 0.795 B N.C 19.06 20.2 N.C N.C N.C 0.53 C 0.504 0.50 13.5 12.8 0.520 13.2 12.8 0.059 D 0.059 N.C 1.5 1.5 N.C N.C N.C 2.31 E 3.937 N.C 58.72 100.0 N.C N.C N.C F N.C N.C 0.53 N.C N.C 0.724 18.4 13.50 G 0.47 0.488 N.C 11.9 12.4 0.567 14.4 12.01 H 0.47 0.469 N.C 11.9 11.9 0.606 15.4 12.01 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Qualification Information† Industrial * (per JEDEC JESD47F†† guidelines) Qualification Level Moisture Sensitivity Level MSL1 DFET 1.5 (per JEDEC J-STD-020D††) Yes RoHS Compliant † Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability Applicable version of JEDEC standard at the time of product release. †† * Industrial qualification standards except autoclave test conditions. Revision History Date 05/14/2015 Comments Updated registered trademark from DirectFETTM to DirectFET® on page 1,9 and 10. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 11 www.irf.com © 2015 International Rectifier Submit Datasheet Feedback May 14, 2015