INTERSIL HFA-0001

HFA-0001
1105
UCT
PROD A1100, HFA
E
T
E
L
t
F
OBSO cements: H rt Center a
o
la
p
p
p
c
e
u
s
ed R
ical S ersil.com/t
mend
Techn
t
Recom ontact our
ww.in
w
r
o
or c
RSIL
E
T
N
-I
1-888
®
September 1998
File Number
2916.3
Ultra High Slew RateOperational Amplifier
Features
The HFA-0001 is an all bipolar op amp featuring high slew
rate (1000V/µs), and high unity gain bandwidth (350MHz).
These features combined with fast settling time (25ns) make
this product very useful in high speed data acquisition
systems as well as RF, video, and pulse amplifier designs.
Other outstanding characteristics include low bias currents
(15µA), low offset current (18µA), and low offset voltage
(6mV).
• Unity Gain Bandwidth. . . . . . . . . . . . . . . . . . . . . . 350MHz
• Full Power Bandwidth . . . . . . . . . . . . . . . . . . . . . . 53MHz
• High Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . 1000V/µs
• High Output Drive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50mA
• Monolithic Construction
Applications
The HFA-0001 offers high performance at low cost. It can
replace hybrids and RF transistor amplifiers, simplifying
designs while providing increased reliability due to
monolithic construction. To enhance the ease of design, the
HFA-0001 has a 50Ω ±20% resistor connected from the
output of the op amp to a separate pin. This can be used
when driving 50Ω strip line, microstrip, or coax cable.
• RF/IF Processors
• Video Amplifiers
• High Speed Cable Drivers
• Pulse Amplifiers
• High Speed Communications
• Fast Data Acquisition Systems
Part Number Information
PART
NUMBER
TEMPERATURE
RANGE
PACKAGE
HFA1-0001-5
0oC to +75oC
14 Lead Ceramic Sidebraze DIP
HFA1-0001-9
-40oC to +85oC
14 Lead Ceramic Sidebraze DIP
HFA3-0001-5
0oC to +75oC
8 Lead Plastic DIP
HFA3-0001-9
-40oC to +85oC
8 Lead Plastic DIP
HFA9P0001-5
0oC to +75oC
16 Lead Widebody SOIC
Pinouts
HFA-0001
(PDIP)
TOP VIEW
NC 1
8
-IN 2
+IN 3
V- 4
HFA-0001
(CDIP)
TOP VIEW
+
RSENSE
NC 1
HFA-0001
(300 MIL SOIC)
TOP VIEW
14 NC
NC 1
16 NC
NC 2
15 NC
NC 3
14 RSENSE
7
V+
NC 2
13 NC
6
OUT
NC 3
12 RSENSE
5
NC
1
-IN
4
+IN
5
11 V+
+
-IN 4
+IN 5
13 V+
+
12 OUT
10 OUT
V-
6
9
NC
NC
7
8
NC
V- 6
11 NC
NC 7
10 NC
NC 8
9 NC
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright © Intersil Americas Inc. 2002. All Rights Reserved
HFA-0001
Absolute Maximum Ratings (Note 1)
Operating Conditions
Supply Voltage (Between V+ and V- Terminals) . . . . . . . . . . . . .12V
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5V
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±4V
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60mA
Junction Temperature (Note 9) . . . . . . . . . . . . . . . . . . . . . . .+175oC
Junction Temperature (Plastic Package) . . . . . . . . . . . . . . . .+150oC
Lead Temperature (Soldering 10 Sec.) . . . . . . . . . . . . . . . . .+300oC
Operating Temperature Range
HFA-0001-9 . . . . . . . . . . . . . . . . . . . . . . . . . .-40oC ≤ TA ≤ +85oC
HFA-0001-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC ≤ TA ≤ +75oC
Storage Temperature Range . . . . . . . . . . . . . .-65oC ≤ TA ≤ +150oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
Electrical Specifications V+ = +5V, V- = -5V, Unless Otherwise Specified
HFA-0001-9
PARAMETER
HFA-0001-5
TEMP
MIN
TYP
MAX
MIN
TYP
MAX
UNITS
+25oC
-
6
15
-
6
30
mV
High
-
4.5
20
-
4.5
30
mV
Low
-
12.5
45
-
12.5
35
mV
High
-
50
-
-
50
-
µV/oC
Low
-
100
-
-
100
-
µV/oC
+25oC
-
15
50
-
15
100
µA
Full
-
20
50
-
20
100
µA
+25oC
-
18
25
-
18
50
µA
Full
-
22
50
-
22
50
µA
Common Mode Range
+25oC
±3
-
-
±3
-
-
V
Differential Input Resistance
+25oC
-
10
-
-
10
-
kΩ
Input Capacitance
+25oC
-
2
-
-
2
-
pF
0.1Hz to 10Hz
+25oC
-
3.5
-
-
3.5
-
µVrms
10Hz to 1MHz
+25oC
-
6.7
-
-
6.7
-
µVrms
fO = 10Hz
+25oC
-
640
-
-
640
-
nV/√Hz
fO = 100Hz
+25oC
-
170
-
-
170
-
nV/√Hz
fO = 100kHz
+25oC
-
6
-
-
6
-
nV/√Hz
fO = 10Hz
+25oC
-
2.35
-
-
2.35
-
nA/√Hz
fO = 100Hz
+25oC
-
0.57
-
-
0.57
-
nA/√Hz
fO = 1000Hz
+25oC
-
0.16
-
-
0.16
-
nA/√Hz
+25oC
150
200
-
150
200
-
V/V
High
150
170
-
100
170
-
V/V
Low
150
220
-
150
220
-
V/V
+25oC
45
47
-
42
47
-
dB
High
40
45
-
40
45
-
dB
Low
42
48
-
dB
INPUT CHARACTERISTICS
Offset Voltage
Average Offset Voltage Drift
Bias Current
Offset Current
Input Noise Voltage
Input Noise Voltage
Input Noise Current
TRANSFER CHARACTERISTICS
Large Signal Voltage Gain (Note 2)
Common Mode Rejection Ratio (Note 3)
45
48
-
Unity Gain Bandwidth
+25oC
-
350
-
-
350
-
MHz
Minimum Stable Gain
Full
1
-
-
1
-
-
V/V
+25oC
-
±3.5
-
-
±3.5
-
V
OUTPUT CHARACTERISTICS
Output Voltage Swing
RL = 100Ω
2
HFA-0001
Electrical Specifications V+ = +5V, V- = -5V, Unless Otherwise Specified (Continued)
HFA-0001-9
PARAMETER
HFA-0001-5
TEMP
MIN
TYP
MAX
MIN
TYP
MAX
UNITS
+25oC
±3.5
±3.7
-
±3.5
±3.7
-
V
High
±3.0
±3.6
-
±3.0
±3.6
-
V
Low
±3.5
±3.7
-
±3.5
±3.7
-
V
Full Power Bandwidth (Note 5)
+25oC
-
53
-
-
53
-
MHz
Output Resistance, Open Loop
+25oC
-
3
-
-
3
-
Ω
Full
±30
±50
-
±30
±50
-
mA
Rise Time (Note 4, 6)
+25oC
-
480
-
-
480
-
ps
Slew Rate (Note 4, 7)
RL = 1kΩ
+25oC
-
1000
-
-
1000
-
V/µs
RL = 100Ω
+25oC
-
875
-
-
875
-
V/µs
0.1%
+25oC
-
25
-
-
25
-
ns
+25oC
-
36
-
-
36
-
%
Full
-
65
75
-
65
75
mA
+25oC
40
42
-
37
42
-
dB
High
35
41
-
35
41
-
dB
Low
40
42
-
37
42
-
dB
RL = 1kΩ
Output Current
TRANSIENT RESPONSE
Settling Time (3V Step)
Overshoot (Note 4, 6)
POWER SUPPLY CHARACTERISTICS
Supply Current
Power Supply Rejection Ratio (Note 8)
NOTES:
1. Absolute Maximum Ratings are limiting values applied individually beyond which the serviceability of the circuit may be impaired. Functional
operation under any of these conditions is not necessarily implied.
2. VOUT = 0 to ±2V, R L = 1kΩ.
3. ∆VCM = ±2V.
4. RL = 100Ω.
SlewRate
5. Full Power Bandwidth is calculated by equation: FPBW = ----------------------------- , V
= 3.0V .
PEAK
2πV
PEAK
6. VOUT = ±200mV, AV = +1.
7. VOUT = ±3V, AV = +1.
8. ∆VS = ±4V to ±6V.
9. See Thermal Constants in ‘Applications Information’ text. Maximum power dissipation, including output load, must be designed to maintain the
junction temperature below +175oC for hermetic packages, and below +150oC for plastic packages.
Schematic Diagram
Die Characteristics
V+
RSENSE
-IN
+IN
VOUT
V-
3
Thermal Constants (oC/W)
HFA1-0001-5/-9
HFA3-0001-5
HFA9P-0001-5/-9
θJA
75
98
96
θJC
13
36
27
HFA-0001
Test Circuits
VIN
+
VOUT
50Ω
1kΩ
VIN
+
50Ω
20pF
50Ω
VOUT
100Ω
50Ω
FIGURE 1. LARGE SIGNAL RESPONSE TEST CIRCUIT
FIGURE 2. SMALL SIGNAL RESPONSE TEST CIRCUIT
LARGE SIGNAL RESPONSE
VOUT = 0V to 3V
Vertical Scale: 1V/Div.
Horizontal Scale: 2ns/Div.
SMALL SIGNAL RESPONSE
VOUT = 0mV to 200mV
Vertical Scale: 100mV/Div.
Horizontal Scale: 2ns/Div.
VIN
VIN
VOUT
VOUT
NOTE: Initial Step In Output Is Due To Fixture Feedthrough
PROPAGATION DELAY
Vertical Scale: 500mV/Div.
Horizontal Scale: 2ns/Div.
AV = +1, R L = 100Ω, VOUT = 0V to 3V
VSETTLE
1kΩ
1kΩ
100Ω
VIN
100Ω
VOUT
+
FIGURE 3. SETTLING TIME SCHEMATIC
4
NOTE: Test Fixture Delay of 450ps is Included
HFA-0001
Typical Performance Curves
VS = ±5V, TA = +25oC, Unless Otherwise Specified
50
VIN
VOUT
50Ω
GAIN
20
0
180
135
PHASE
90
45
RL = 100Ω
0
1G
10
0
GAIN
-10
-20
180
PHASE
135
90
45
AV = +1, RL = 100Ω, R F = 50Ω
0
FREQUENCY (Hz)
10M
100M
FREQUENCY (Hz)
FIGURE 4. OPEN LOOP GAIN AND PHASE vs FREQUENCY
FIGURE 5. CLOSED LOOP GAIN vs FREQUENCY
100K
10M
VIN
VOUT
50Ω
10
100M
100Ω
-10
-20
180
135
90
45
0
1G
PHASE MARGIN (DEGREES)
0
1M
1G
30
100Ω
20
GAIN (dB)
20
GAIN (dB)
1M
1M
VIN
10
VOUT
50Ω
0
900Ω
100Ω
100Ω
-10
180
135
90
AV = +10
RL = 100Ω
FIGURE 6. CLOSED LOOP GAIN vs FREQUENCY
FIGURE 7. CLOSED LOOP GAIN vs FREQUENCY
100M
80
700
600
1M
0
1G
FREQUENCY (Hz)
100M
100K
45
10M
FREQUENCY (Hz)
10M
PHASE MARGIN (DEGREES)
10
PHASE MARGIN (DEGREES)
20
100Ω
50Ω
PHASE MARGIN (DEGREES)
30
GAIN (dB)
GAIN (dB)
40
AV = +1, RL = 100Ω
VOUT = 0mV to 200mV
70
CMRR (dB)
RISE TIME (ps)
60
500
400
300
50
40
30
20
200
100
-60
10
-40
-20
0
20
40
60
80
100
TEMPERATURE (oC)
FIGURE 8. RISE TIME vs TEMPERATURE
5
120
0
100K
1M
10M
100M
FREQUENCY (Hz)
FIGURE 9. CMRR vs FREQUENCY
1G
HFA-0001
VS = ±5V, TA = +25oC, Unless Otherwise Specified (Continued)
80
25
70
20
60
15
OFFSET VOLTAGE (mV)
PSRR (dB)
Typical Performance Curves
50
40
-PSRR
30
+PSRR
20
10
10
5
0
-5
-10
-15
0
100K
1M
10M
FREQUENCY (Hz)
100M
-20
-60
1G
-40
-20
0
20
40
60
80
100
120
TEMPERATURE (oC)
FIGURE 10. PSRR vs FREQUENCY
FIGURE 11. OFFSET VOLTAGE vs TEMPERATURE
(3 REPRESENTATIVE UNITS)
20
40
15
OFFSET CURRENT (µA)
BIAS CURRENT (µA)
30
20
10
0
10
5
0
-5
-10
-15
-10
-20
-20
-60
-40
-20
0
20
40
60
80
100
-25
-60
120
-40
-20
0
60
80
100
120
4.6
4.4
4.2
4.0
-VOUT
3.8
3.6
+VOUT
3.4
3.2
3.0
2.8
2.6
2.4
2.2
60
80
100
TEMPERATURE (oC)
FIGURE 14. OPEN LOOP GAIN vs TEMPERATURE
6
40
FIGURE 13. OFFSET CURRENT vs TEMPERATURE
(3 REPRESENTATIVE UNITS)
OUTPUT VOLTAGE (V)
OPEN LOOP GAIN (V/V)
FIGURE 12. BIAS CURRENT vs TEMPERATURE
(3 REPRESENTATIVE UNITS)
300
280
260
-AVOL
240
220
200
+AVOL
180
160
140
120
100
80
60
40
20 RL = 1kΩ, VOUT = 0V to ±2V
0
-60
-40
-20
0
20
40
20
TEMPERATURE (oC)
TEMPERATURE (oC)
120
2.0
-60
RL = 1kΩ
-40
-20
0
20
40
60
80
100
120
TEMPERATURE (oC)
FIGURE 15. OUTPUT VOLTAGE SWING vs TEMPERATURE
HFA-0001
Typical Performance Curves
VS = ±5V, TA = +25oC, Unless Otherwise Specified (Continued)
60
1200
1100
AV = +1, RL = 100Ω
VOUT = ±3V
58
56
52
-SLEW RATE
CMRR (dB)
SLEW RATE (V/µs)
54
1000
900
+SLEW RATE
800
-CMRR
50
48
46
+CMRR
44
42
700
40
38
600
36
500
-60
-40
-20
0
20
40
60
80
100
34
-60
120
-40
-20
FIGURE 16. SLEW RATE vs TEMPERATURE
90
SUPPLY CURRENT (mA)
PSRR (dB)
60
80
100
120
60
-PSRR
60
50
40
+PSRR
30
20
50
40
30
20
10
10
0
-40
-20
0
20
40
60
80
100
120
0
1
TEMPERATURE (oC)
2
3
4
5
SUPPLY VOLTAGE (±V)
FIGURE 18. PSRR vs TEMPERATURE
FIGURE 19. SUPPLY CURRENT vs SUPPLY VOLTAGE
70
5.0
PEAK OUTPUT VOLTAGE SWING (V)
68
66
SUPPLY CURRENT (mA)
40
70
∆VS = ±4V TO ±6V
70
64
62
60
58
56
54
52
50
48
46
44
-60
20
FIGURE 17. CMRR vs TEMPERATURE
80
0
-60
0
TEMPERATURE (oC)
TEMPERATURE (oC)
-40
-20
0
20
40
60
80
100
120
TEMPERATURE (oC)
FIGURE 20. SUPPLY CURRENT vs TEMPERATURE
7
4.5
AV = +1, R L = 100Ω
THD < 1%
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
1M
10M
100M
1G
FREQUENCY (Hz)
FIGURE 21. MAXIMUM OUTPUT VOLTAGE SWING vs FREQUENCY
HFA-0001
Typical Performance Curves
VS = ±5V, TA = +25oC, Unless Otherwise Specified (Continued)
240
5.0
200
OPEN LOOP GAIN (V/V)
4.0
3.5
3.0
2.5
2.0
1.5
140
120
100
0.5
60
100
1K
LOAD RESISTANCE (Ω)
40
10
10K
8
7
7
6
6
5
5
4
4
NOISE CURRENT
3
3
2
2
NOISE VOLTAGE
1
1
0
10
100
1K
10K
0
100K
100
1K
LOAD RESISTANCE (Ω)
10K
FIGURE 23. OPEN LOOP GAIN vs LOAD RESISTANCE
NOISE VOLTAGE (nV/√Hz)
8
NOISE CURRENT (nA/√Hz)
FIGURE 22. OUTPUT VOLTAGE SWING vs LOAD RESISTANCE
-AVOL
+AVOL
160
80
0
10
NOISE VOLTAGE (µV/√Hz)
180
1.0
1
VOUT = ±2V
220
600
600
500
500
400
400
300
300
200
100
0
100
NOISE CURRENT
NOISE VOLTAGE
200
100
0
100K
FREQUENCY (Hz)
1K
10K
FREQUENCY (Hz)
FIGURE 24. INPUT NOISE vs FREQUENCY
FIGURE 25. INPUT NOISE vs FREQUENCY
FIGURE 26. INPUT VOLTAGE NOISE 0.1Hz to 10Hz
AV = 50, Noise Voltage = 1.605µVrms (RTI)
Noise Voltage = 10.12µVP-P
FIGURE 27. INPUT NOISE VOLTAGE 10Hz to 1MHz
AV = 50, Noise Voltage = 5.36µVrms (RTI)
Noise Voltage = 29.88µVP-P
8
NOISE CURRENT (pA/√Hz)
PEAK OUTPUT VOLTAGE SWING (V)
4.5
AV = +1, fO = 50kHz
THD < 1%
HFA-0001
Applications Information
This 50Ω resistor can be used as the series resistor instead
of an external resistor.
Offset Adjustment
When applications require the offset voltage to be as low as
possible, the figure below shows two possible schemes for
adjusting offset voltage.
For a voltage follower application, use the circuit in Figure 29
without R2 and with RI shorted. R1 should be 1MΩ to 10MΩ.
The adjustment resistors will cause only a very small gain error.
RF
+5V
VIN
RI
+
50kΩK
R1
100kΩ
VOUT
R2
100
VIN
50Ω COAX CABLE
50Ω
+
50
VOUT
50Ω
RF
FIGURE 30.
PC board traces can be made to look like a 50Ω or 75Ω
transmission line, called microstrip. Microstrip is a PC board
trace with a ground plane directly beneath, on the opposite
side of the board, as shown in Figure 31.
SIGNAL
TRACE
-5V
w
t
 R 2
Adjustment Range ≅ ± V  -------
 R 1
h
ER
FIGURE 28. INVERTING GAIN
DIELECTRIC
(PC BOARD)
GROUND
PLANE
VIN
+V
R1
100kΩ
+
-
FIGURE 31.
VOUT
RI
50kΩ
RF
R2
100Ω
When manufacturing pc boards, the trace width can be
calculated based on a number of variables. The following
equation is reasonably accurate for calculating the proper
trace width for a 50Ω transmission line.
-V
Z
 R 2
Adjustment Range ≅ ± V  ------- 
 R 1
 RF 
Gain ≅ 1 +  --------------------
 R I + R 2
FIGURE 29. NON-INVERTING GAIN
PC Board Layout Guidelines
When designing with the HFA-0001, good high frequency
(RF) techniques should be used when making a PC board. A
massive ground plane should be used to maintain a low
impedance ground. Proper shielding and use of short
interconnection leads are also very important.
To achieve maximum high frequency performance, the use
of low impedance transmission lines with impedance
matching is recommended: 50Ω lines are common in
communications and 75Ω lines in video systems. Impedance
matching is important to minimize reflected energy therefore
minimizing transmitted signal distortion. This is
accomplished by using a series matching resistor (50Ω or
75Ω), matched transmission line (50Ω or 75Ω), and a
matched terminating resistor, as shown in Figure 30. Note
that there will be a 6dB loss from input to output.The HFA0001 has an integral 50Ω ±20% resistor connected to the op
amps output with the other end of the resistor pinned out.
9
O
5.98h
87
= ------------------------------ ln  --------------------- Ω
 0.8w + t
E + 1.41
R
Power supply decoupling is essential for high frequency op
amps. A 0.01µF high quality ceramic capacitor at each
supply pin in parallel with a 1µF tantalum capacitor will
provide excellent decoupling as shown in Figure 32.
V+
1.0µF
0.01µF
+
0.01µF
1.0µF
V-
FIGURE 32. POWER SUPPLY DECOUPLING
HFA-0001
Thermal Management
V+
C
R
C
+
C
R
C
The HFA-0001 can sink and source a large amount of
current making it very useful in many applications. Care
must be taken not to exceed the power handling capability of
the part to insure proper performance and maintain high
reliability. The following graph shows the maximum power
handling capability of the HFA-0001 without exceeding the
maximum allowable junction temperature of +175oC. The
curves also show the improved power handling capability
when heatsinks are used based on AVVID heatsink #5801B
for the 8 lead Plastic DIP and IERC heatsink #PEP50AB for
the 14 lead Sidebraze DIP. These curves are based on
natural convection. Forced air will greatly improve the power
dissipation capabilities of a heatsink.
V-
Chip capacitors produce the best results due to ease of
placement next to the op amp and they have negligible lead
inductance. If leaded capacitors are used, the leads should
be kept as short as possible to minimize lead inductance.
Figures 32 and 33 illustrate two different decoupling
schemes. Figure 33 improves the PSRR because the
resistor and capacitors create low pass filters. Note that the
supply current will create a voltage drop across the resistor.
Saturation Recovery
When an op amp is over driven output devices can saturate
and sometimes take a long time to recover. By clamping the
input to safe levels, output saturation can be avoided. If
output saturation cannot be avoided, the recovery time from
25% over-drive is 20ns and 30ns from 50% over-drive.
10
POWER DISSIPATION (W)
FIGURE 33. IMPROVED DECOUPLING/CURRENT LIMITING
3.0
2.8
B
2.6
2.4
A
2.2
2.0
1.8
D
1.6
1.4
C
1.2
1.0
0.8
0.6 A: 8 LEAD PLASTIC DIP WITH HEATSINK
B: 14 LEAD SIDEBRAZE DIP WITH HEATSINK
0.4
C: 8 LEAD PLASTIC DIP ONLY
0.2 D: 14 LEAD SIDEBRAZE DIP ONLY
0
20
40
60
80
100
AMBIENT TEMPERATURE (oC)
FIGURE 34.
120