ISL8200AMEVAL2PHZ User Guide

Application Note 1739
ISL8200AMEVAL2PHZ Evaluation Board User’s Guide
MODULE GROUP 1
(U201)
MODULE GROUP 2
(U301)
PGOOD
VIN = UP TO 20V
VOUT = 1V
LOAD UP TO 20A
FIGURE 1. ISL8200AMEVAL2PHZ EVALUATION BOARD
ISL8200AMEVAL2PHZ
Evaluation Board
TABLE 2. RECOMMENDED COMPONENT SELECTION FOR QUICK
EVALUATION
The ISL8200AM is a complete 10A step-down current shareable
switch mode power module in a low profile package. It can be
used in a standalone single-phase operation as well as current
shared applications where multiple modules are connected in
parallel.
The ISL8200AMEVAL2PHZ evaluation board is used to
demonstrate performance of the ISL8200AM 2-phase current
shared application. The input voltage range can be up to 20V,
and the output voltage is 1V and 20A maximum load. The
output voltage can support a range up to 6V with the proper
output capacitor rating.
TABLE 1. EVALUATION BOARD ELECTRICAL SPECIFICATIONS
DESCRIPTION
MIN
Input Voltage
5
Output Voltage
0.6
Output Current
1
MAX
UNIT
20
V
6
V
20
Switching Frequency
700
Efficiency, VIN = 8V, VOUT = 5V,
FSW = 900kHz, IOUT = 10A
April 22, 2014
AN1739.0
TYP
800
94.1
1
VOUT
(V)
IOUT
(A)
C213/C313
(pF)
FSW
(kHz)
RFSYNC
(kΩ)
1
20
OPEN
800
59
2.5
20
OPEN
850
55
3.3
20
680/680
1050
45
5
20
680/680
1150
41
Recommended Equipment
• 0V to 20V power supply with at least 15A source current
capability
• One Electronic Load capable of sinking current up to 20A
• Digital multi-meters (DMMs)
• 100MHz quad-trace oscilloscope
• Signal generator (for synchronization demonstration)
A
1500
kHz
%
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas LLC 2014. All Rights Reserved
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.
All other trademarks mentioned are the property of their respective owners.
Application Note 1739
1300
PVIN1 and GND banana plugs are the input power terminals.
1200
Two input electrolytic capacitor footprints are provided to handle
the input current ripple.
1100
Two SANYO POSCAP 2TPF330M6 (330µF, ESR 6mΩ) are used as
output E-caps for each channel. Also, capacitor footprints are
available for the user to evaluate different output capacitors.
J3, J4 are output lugs for load connections.
TP301 is the clock output. The default phase shift of the CLKOUT
signal from module 1 (U201) causes the second to switch with a
phase shift of 180°, which can be observed by the relative phase
between PHASE2 and PHASE3 signals as shown in Figures 37
and 38.
R203, R303 and C210, C310 are small added filters for the VIN pins.
Quick Start
1. Ensure that the circuit is correctly connected to the supply
(PVIN1 and GND banana plugs) and load (J3 and J4) prior to
applying any power.
2. Adjust the input supply to be 5V. Turn on the input power
supply.
3. Verify the two outputs’ voltages are correct. If the PGOOD is set
high, LED301 will be green. If the PGOOD is set low, LED301 will
be red. TP300 is the test post to monitor PGOOD.
Evaluating Other Output
Voltages
where VREF = 0.6V
ROS = 2.2k internal
12VIN
15VIN
1000
8VIN
900
20VIN
800
5VIN
700
600
1.0
1.5
(EQ. 1)
The output capacitors must be changed to support the
corresponding output voltage. The onboard output capacitors are
rated at 6.3V max.
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
VOUT (V)
FIGURE 2. OPTIMUM FREQUENCY vs VOUT
Programming the Input Voltage
UVLO and its Hysteresis
By programming the voltage divider at the EN pin connected to
the input rail, the input UVLO and its hysteresis can be
programmed. The ISL8200AMEVAL2PHZ has R1 = 8.25k and
R2 = 2.05k; the IC will be disabled when the input voltage drops
below 4.5V and will restart after VIN recovers to be above 4.0V.
The UVLO equations are re-stated in the following, where RUP and
RDOWN are the upper and lower resistors of the voltage divider at
EN pin, VHYS is the desired UVLO hysteresis and VFTH is the
desired UVLO falling threshold.
V HYS
R UP = --------------I HYS
The ISL8200AMEVAL2PHZ kit outputs are preset to 1.0V/20A.
VOUT can also be adjusted between 0.6V to 6V by changing the
value of R221 and R321 simultaneously as given by Equation 1.
 V OUT – V REF 
R 221 = ------------------------------------------ ROS
 V REF 
FREQUENCY (kHz)
Circuits Description
where IHYS = N x 30µA
N = number of phases (= 2)
R UP  V ENREF
R DOWN = -------------------------------------------- where VENREF = 0.6V
V FTH – V ENREF
(EQ. 3)
(EQ. 4)
For 12V applications, if it is desired to have the IC disabled when
the input voltage drops below 9V and restart when VIN recovers
above 10.6V, then R1 = 16.5k and R2 = 2.6k.
For different output voltage, adjust FSW according to Figure 2.
The frequency selection resistor (RFSYNC) can be estimated by
Equation 2.
4
R FSYNC  k  = 4.671 10  Fsw  kHz 
– 1.04
(EQ. 2)
Where RFSYNC = R223//59k, 59k is the internal resistor.
For high output applications, the feedback gain is reduced, so the
0dB cross-over frequency is pushed closer to the LC resonance
frequency. Please add a zero in the loop to have better stability.
We recommend using 680pF capacitors at C213 and C313 to
boost the phase margin.
Submit Document Feedback
2
AN1739.0
April 22, 2014
Application Note 1739
Efficiency Measurement
Figures 12 through 27 show the efficiency measurement for the
ISL8200AMEVAL2PHZ Evaluation Board. The voltage and current
meter can be used to measure input/output voltage and current.
In order to obtain an accurate measurement and prevent the
voltage drop of PCB or wire trace, the voltage meter must be
close to the input/output terminals. For simplicity, the measuring
point for the input voltage meter is at the TP1 terminal, and the
measuring point for the output voltage meter is at the TP3
terminal.
The efficiency equation is shown in Equation 5:
 V OUT  I OUT 
P OUT
Output Power
Efficiency = ------------------------------------ = ---------------- = ---------------------------------------P IN
 V IN  I IN 
Input Power
(EQ. 5)
Output Ripple/Noise
Measurement
Simple steps should be taken to ensure that there is minimum
pickup noise due to high frequency events, which can be
magnified by the large ground loop formed by the oscilloscopeprobe ground. This means that even a few inches of ground wire
on the oscilloscope probe may result in hundreds of millivolts of
noise spikes when improperly routed or terminated. This effect
can be overcome by using the short loop measurement method
to minimize the measurement loop area for reducing the pickup
noise. The short loop measurement method is shown in Figure 3.
For ISL8200AMEVAL2PHZ evaluation board, the output
ripple/noise measurement point is located at the C202/C302
terminal.
OUTPUT
CAP
OUTPUT
OUTPUT
CAP
CAP
OR MOSFET
FIGURE 3. OUTPUT RIPPLE/NOISE MEASUREMENT
Submit Document Feedback
3
AN1739.0
April 22, 2014
Submit Document Feedback
ISL8200AMEVAL2PHZ Schematic
PVIN1
TP1
TP3
PVIN1
R1
8.25k
FF_BUS
1
C9
330uF
C25
DNP
C21
DNP
C19
330uF
C24
DNP
C12
DNP
C51
DNP
C35
DNP
VOUT
C39
DNP
C34
DNP
C47
DNP
J4
1
R4
DNP
R2
2.05k
JP1
C18
DNP
GND
TP4
2
4
C15
DNP
1
VOUT
VOUT
EN_BUS
C3
680uf
J3
R3
DNP
TP2
GND
VCC3
3
1
R325
3.3k
LED301
TP301 CLK_OUT
22
PGOOD
21
VCC2
20 OCSET2
15
C309
10u
PHASE3
18
17
16
C203
22u
C201
C206
22u
C202
DNP
PHASE2
TP302
VOUT
22uF
AN1739.0
April 22, 2014
FIGURE 4.
1
VOUT_SET
ISFETDRV3
2 VSEN_REM-3
3
5
4
ISET
6
C304
1000p
C313
DNP
N.C.
U301
VIN
PGOOD
ISL8200AM
PVCC
VCC
PGND1.23
OCSET
PHASE
PVIN1
PVIN1
ISHARE
9
7
ISET3
PH_CNTRL3
FSYNC_IN
FF
PVCC3 14
C310
2.2u
10
11
1
R209
DNP
PHASE
TP204
PVIN1
13
EN
VOUT
OCSET
VIN3
ISHARE_BUS
1
VOUT_SET
ISFETDRV2
2 VSEN_REM-2
3
ISFETDRV
VSEN_REM-
ISET2
5
4
ISET
PGND1.4
FSYNC_IN2
7
6
ISHARE
CLK_23
8
FSYNC_IN
PH_CNTRL2
9
CLKOUT
PH_CNTRL
10
PGND1.23
R303
23
12
0
C314
DNP
VOUT_SET3
C303
22u
C306
22u
19
PHASE2 16
PGOOD
VCC
PVIN
10u
ISHARE_BUS
11
15
C209
EN_BUS
0
ISL8200AM
PVCC
1n
VOUT
PGND
2.2u
U201
VIN
C311
RM+2
18
C210
TP34
13
14
PVCC2
VSEN_REM+2
PVIN
TP203
R306
0
R221
1.47k
17
1
C204
1000p
C213
DNP
N.C.
VOUT
VIN2
PVIN1
VOUT_SET2
EN
FF_BUS
19
1n
R203
FF
EN_BUS
12
PGND
C211
0
C214
DNP
8
RM-2
FF_BUS
0
RM-3
DNP
DNP
R206
10k
R311
R217 10k
DNP
R211
TP202
R317
CLKOUT
R223
1
ISFETDRV
DNP
DNP
C305
JP301
2
VSEN_REM-
2
C212
PGND1.4
DNP
R315
10k
2N7002LT1
1
PGOOD
2
10k
C205
SYS_ISH_BUS
CLK_23
Q302
DNP
R215
GREEN
PH_CNTRL
C215
CLK_12
TP201
RED
34
TP300
SYS_ISH_BUS
C301
C302
DNP
22uF
VOUT
23
1.47k
VSEN_REM+3
RM+3
VOUT
0
22 PGOOD
21
R321
VCC3
20
OCSET3
R309
DNP
PHASE3
Application Note 1739
R324
3.3k
Submit Document Feedback
ISL8200AMEVAL2PHZ Bill of Materials
COMMON
COMPONENTS
VALUE
5
CH2
CH3
PART NUMBER
PART DESCRIPTION
U201
U301
R206
R306
0
RES, SMD, 0603, 0Ω, 1/16W, TF, ROHS
FF-EN Connection
R203
R303
1
RES, SMD, 0603, 1Ω, 1/10W, 1%, TF, ROHS
PVIN-VIN
R215
R315
10k
RES, SMD, 0603, 10k, 1/10W, 1%, TF, ROHS
RISHARE
R217
R317
10k
RES, SMD, 0603, 10k, 1/10W, 1%, TF, ROHS
RISET
R221
R321
1.47k
RES, SMD, 0603, 1.47k, 1/10W, 1%, TF, ROHS
RFB_TOP
RM+2, RM-2
RM+3, RM-3
0
RES, SMD, 0603, 0Ω, 1/16W, TF, ROHS
REM_SENS+/-
ISL8200AM
COMMENTS
Module
8.25k
RES, SMD, 0603, 8.25kΩ, 1/10W, 1%, TF, ROHS
EN-Top
R2
2.05k
RES, SMD, 0603, 2.05k, 1/10W, 1%, TF, ROHS
EN-Bottom
CAP, SMD, 0603, 1000pF, 50V, 10%, X7R, ROHS
CEN-Bottom
C211
C311
1nF
C209
C309
10µF
CAP, SMD, 0805, 10µF, 16V, 10%, X5R, ROHS
PVCC_cap
C210
C310
2.2µF
CAP, SMD, 0805, 2.2µF, 25V, 10%, X5R, ROHS
VIN_cap
C204
C304
1000p
CAP, SMD, 0603, 1000pF, 50V, 5%, COG, ROHS
SENS_FILTER
680µF
CAP, ALUMINUM, RADIAL, 680µF, 35V
Cin_elec_common
Cin_Ceremic_1
C3
C203, C206
C303, C306
22µF
CAP, SMD, 1210, 22µF, 25V, 20%, X5R, ROHS
C202
C302
22µF
CAP, SMD, 1206, 22µF, 16V, 10%, X5R, ROHS
C9, C19
330µF
6TPF330M6L
POSCAP 6.3V 9mΩ
Cout_Bulk1
PGOOD and Additional Placeholder
Q302
2N7002
LED301
C205
SSL-LXA3025IGC-TR LED, SMD, 3x2.5mm, 4P, RED/GREEN, 2V, ROHS
PGOOD_LED
AN1739.0
April 22, 2014
3.3k
C12, C18, C21, C24,
C25, C34, C35, C39,
C47, C51
DNP
Cout
C212
DNP
FSYNC_IN2_cap
R223
DNP
FSYNC_IN2_resistor
DNP
ISET_cap
DNP
ISHARE_cap
C305
R309
RES, SMD, 0603, 3.32k, 1/10W, 1%, TF, ROHS
PGOOD_NFET
R324, R325
C215
R209
TRANSISTOR, N-CHANNEL, SOT-23, 60V, 115mA, ROHS
PGOOD_RES
DNP
C15
DNP
Cin_elec_common
Application Note 1739
R1
Submit Document Feedback
ISL8200AMEVAL2PHZ Bill of Materials
CH2
CH3
(Continued)
COMMON
COMPONENTS
VALUE
R3, R4
DNP
FF-Top, FF-Bottom
PART NUMBER
PART DESCRIPTION
COMMENTS
6
R211
R311
DNP
PH_CNTRL
C213
C313
DNP
CFB_TOP
C214
C314
DNP
CFB_BOTTOM
C201
C301
DNP
Connectors and Test Points
TP201
CONN-MINI TEST POINT, VERTICAL, WHITE, ROHS
CLK_12 test point
5002
CONN-MINI TEST POINT, VERTICAL, WHITE, ROHS
CLK_23 test point
TP202
5002
CONN-MINI TEST POINT, VERTICAL, WHITE, ROHS
EN_BUS test point
TP203
5002
CONN-MINI TEST POINT, VERTICAL, WHITE, ROHS
PVCC_test point
5002
CONN-MINI TEST POINT, VERTICAL, WHITE, ROHS
PHASE test point
5003
CONN-MINI TEST POINT, VERTICAL, WHITE, ROHS
PGOOD test point
1514-2
CONN-TURRET, TERMINAL POST, TH, ROHS
PVIN1, GND, VOUT, GND Turret
Posts
J3, J4
KPA8CTP
HDWARE, MTG, CABLE TERMINAL, 6-14AWG, LUG&SC
Lug
PVIN1
111-0702-001
CONN-BINDING POST, INSUL-RED, THMBNUT-GND, ROHS
Binding Post RED
GND
111-0703-001
CONN-BINDING POST, INSUL-BLK, THMBNUT-GND, ROHS
Binding Post BLACK
TP301
TP204
TP304
TP300
TP1, TP2, TP3, TP4
JP1, JP301
DNP
Application Note 1739
5002
AN1739.0
April 22, 2014
Application Note 1739
ISL8200AMEVAL2PHZ Board Layout
FIGURE 5. ASSEMBLY TOP
FIGURE 6. TOP SILK
Submit Document Feedback
7
AN1739.0
April 22, 2014
Application Note 1739
ISL8200AMEVAL2PHZ Board Layout
(Continued)
FIGURE 7. COMPONENT SIDE - TOP
FIGURE 8. LAYER 2
Submit Document Feedback
8
AN1739.0
April 22, 2014
Application Note 1739
ISL8200AMEVAL2PHZ Board Layout
(Continued)
FIGURE 9. LAYER 3
FIGURE 10. BOTTOM LAYER
Submit Document Feedback
9
AN1739.0
April 22, 2014
Application Note 1739
ISL8200AMEVAL2PHZ Board Layout
(Continued)
FIGURE 11. SILKSCREEN BOTTOM (MIRRORED)
Submit Document Feedback
10
AN1739.0
April 22, 2014
Application Note 1739
Test Data for ISL8200AMEVAL2PHZ
Efficiency
94.4
92.1
94.2
92.0
94.0
91.9
900kHz
850kHz
93.6
93.4
950kHz
93.2
91.8
EFFICIENCY (%)
EFFICIENCY (%)
93.8
93.0
1.15MHz
91.6
91.5
91.4
92.8
1.05MHz
91.3
92.6
VIN = 8V
VOUT = 5V
92.4
92.2
1.1MHz
91.7
5
VIN = 12V
VOUT = 5V
91.2
10
15
91.1
20
5
10
LOAD (A)
FIGURE 12. EFFICIENCY (V IN = 8V, VOUT = 5V)
89.2
91.0
89.0
1.1MHz
1.15MHz
90.8
88.8
90.6
EFFICIENCY (%)
EFFICIENCY (%)
20
FIGURE 13. EFFICIENCY (V IN = 12V, VOUT = 5V)
91.2
1.05MHz
90.4
90.2
90.0
89.8
89.6
88.6
88.4
88.2
1.15MHz
88.0
1.05MHz
1.1MHz
87.8
87.6
VIN = 15V
VOUT = 5V
89.4
89.2
15
LOAD (A)
5
VIN = 20V
VOUT = 5V
87.4
10
15
87.2
20
5
10
FIGURE 14. EFFICIENCY (VIN = 15V, VOUT = 5V)
20
FIGURE 15. EFFICIENCY (V IN = 20V, VOUT = 5V)
92.8
12VIN
FSW = 1.15MHz
VOUT = 5V
92.2
91.6
EFFICIENCY(%)
15
LOAD (A)
LOAD (A)
15VIN
91.0
90.4
89.8
20VIN
89.2
88.6
88.0
87.4
86.8
5
10
15
20
LOAD (A)
FIGURE 16. EFFICIENCY (F SW = 1.15MHz, VOUT = 5V)
Submit Document Feedback
11
AN1739.0
April 22, 2014
Application Note 1739
Test Data for ISL8200AMEVAL2PHZ
(Continued)
92.0
90.4
900kHz
91.5
850kHz
89.6
EFFICIENCY (%)
EFFICIENCY (%)
91.0
90.0
950kHz
90.5
90.0
89.5
89.0
88.5
950kHz
89.2
88.8
1.05MHz
88.4
900kHz
88.0
1MHz
87.6
88.0
87.2
VIN = 5V
VOUT = 2.5V
87.5
87.0
5
VIN = 8V
VOUT = 2.5V
86.8
10
15
86.4
20
5
10
LOAD (A)
FIGURE 17. EFFICIENCY (VIN = 5V, VOUT = 2.5V)
87.0
900kHz
850kHz
87.2
86.7
86.4
950kHz
86.8
EFFICIENCY (%)
EFFICIENCY (%)
87.0
86.6
86.4
86.2
86.0
750kHz
86.1
VIN = 12V
VOUT = 2.5V
85.6
85.8
85.5
850kHz
85.2
84.9
5
VIN = 15V
VOUT = 2.5V
84.3
10
15
84.0
20
5
10
LOAD (A)
87.4
83.4
86.6
83.1
85.8
EFFICIENCY (%)
88.2
83.7
750kHz
800kHz
82.5
82.2
20
FIGURE 20. EFFICIENCY (V IN = 15V, VOUT = 2.5V)
84.0
82.8
15
LOAD (A)
FIGURE 19. EFFICIENCY (V IN = 12V, VOUT = 2.5V)
EFFICIENCY (%)
800kHz
84.6
85.8
850kHz
81.9
12VIN
15VIN
85.0
84.2
20VIN
83.4
82.6
81.8
81.6
VIN = 20V
VOUT = 2.5V
81.3
81.0
20
FIGURE 18. (V IN = 8V, VOUT = 2.5V)
87.4
85.4
15
LOAD (A)
5
10
15
LOAD (A)
FIGURE 21. EFFICIENCY (V IN = 20V, VOUT = 2.5V)
Submit Document Feedback
12
FSW = 850kHz
VOUT = 2.5V
81.0
20
80.2
5
10
15
20
LOAD (A)
FIGURE 22. EFFICIENCY (F SW = 850kHz, VOUT = 2.5V)
AN1739.0
April 22, 2014
Application Note 1739
(Continued)
91.4
89.6
91.2
89.4
91.0
89.2
950kHz
90.8
90.6
1MHz
EFFICIENCY (%)
EFFICIENCY (%)
Test Data for ISL8200AMEVAL2PHZ
1.05MHz
90.4
90.2
90.0
89.8
1.1MHz
89.0
1MHz
88.8
1.15MHz
88.6
900kHz
88.4
88.2
88.0
VIN = 8V
VOUT = 3.3V
89.6
89.4
1.05MHz
5
10
15
87.8 VIN = 12V
VOUT = 3.3V
87.6
5
20
10
LOAD (A)
15
20
LOAD (A)
FIGURE 23. EFFICIENCY (V IN = 8V, VOUT = 3.3V)
FIGURE 24. EFFICIENCY (V IN = 12V, VOUT = 3.3V)
88.2
86.2
1MHz
88.0
86.0
950kHz
85.8
1.05MHz
87.6
EFFICIENCY (%)
EFFICIENCY (%)
87.8
87.4
87.2
87.0
86.8
86.6
800kHz
85.4
85.2
750kHz
85.0
850kHz
84.8
84.6
VIN = 15V
VOUT = 3.3V
86.4
86.2
85.6
5
10
15
VIN = 20V
VOUT = 3.3V
84.4
84.2
20
5
10
LOAD (A)
15
20
LOAD (A)
FIGURE 25. EFFICIENCY (VIN = 15V, VOUT = 3.3V)
FIGURE 26. EFFICIENCY (V IN = 20V, VOUT = 3.3V)
91.6
8VIN
91.0
EFFICIENCY (%)
90.4
89.8
12VIN
89.2
88.6
15VIN
88.0
87.4
86.8
FSW = 1.05MHz
VOUT = 3.3V
86.2
85.6
5
10
15
20
LOAD (A)
FIGURE 27. EFFICIENCY (F SW = 1.05MHz, VOUT = 3.3V)
Submit Document Feedback
13
AN1739.0
April 22, 2014
Application Note 1739
Test Data for ISL8200AMEVAL2PHZ
(Continued)
Load Regulation
5.10
5.10
FSW = 1.05MHz
VOUT = 5V
5.09
20VIN
5.08
15VIN
5.06
5.07
VOUT (V)
VOUT (V)
20VIN
5.08
5.07
15VIN
5.06
5.05
5.05
12VIN
5.04
12VIN
5.04
5.03
5.02
FSW = 1.1MHz
VOUT = 5V
5.09
5.03
5
10
15
5.02
20
5
10
LOAD (A)
15
20
LOAD (A)
FIGURE 28. LOAD REGULATION (F SW = 1.05MHz, VOUT = 5V)
FIGURE 29. LOAD REGULATION (F SW = 1.1MHz, VOUT = 5V)
2.530
2.520
FSW = 850kHz
2.528 VOUT = 2.5V
fsw=950kHz
F
SW = 950kHz
Vout=2.5V
V
OUT = 2.5V
2.519
20VIN
2.526
2.518
2.517
VOUT (V)
VOUT (V)
2.524
12VIN
2.516
8VIN
15VIN
2.522
2.520
2.518
12VIN
2.515
8VIN
2.516
2.514
2.513
2.514
5
10
15
2.512
20
5
10
LOAD (A)
15
20
LOAD (A)
FIGURE 30. LOAD REGULATION (FSW = 950kHz, VOUT = 2.5V)
3.348
FIGURE 31. LOAD REGULATION (F SW = 850kHz, VOUT = 2.5V)
FSW = 1.05MHz
VOUT = 3.3V
3.346
15VIN
3.344
VOUT (V)
3.342
3.340
3.338
3.336
12VIN
3.334
8VIN
3.332
3.330
3.328
5
10
15
20
LOAD (A)
FIGURE 32. LOAD REGULATION (F SW = 1.05MHz, VOUT = 3.3V)
Submit Document Feedback
14
AN1739.0
April 22, 2014
Application Note 1739
Test Data for ISL8200AMEVAL2PHZ
(Continued)
1V Waveforms
VOUT 500mV/DIV
VOUT 500mV/DIV
PG 2V/DIV
PG 2V/DIV
1ms/DIV
200ms/DIV
FIGURE 33. START-UP AT NO LOAD, V IN = 12V, VOUT = 1V
FIGURE 34. SHUTDOWN AT NO LOAD
VOUT 500mV/DIV
IOUT 5A/DIV
VOUT 500mV/DIV
PG 2V/DIV
IOUT 5A/DIV
PG 2V/DIV
2ms/DIV
200µs/DIV
FIGURE 35. START-UP AT 20A LOAD
FIGURE 36. SHUTDOWN AT NO LOAD
M1: VOUT RIPPLE 5VIN 50mV/DIV
M1: VOUT RIPPLE 5VIN 50mV/DIV
M2: VOUT RIPPLE 12VIN 50mV/DIV
M2: VOUT RIPPLE 12VIN 50mV/DIV
M4: VOUT RIPPLE 20VIN 50mV/DIV
M4: VOUT RIPPLE 20VIN 50mV/DIV
1µs/DIV
1µs/DIV
FIGURE 37. STEADY STATE NO LOAD
FIGURE 38. STEADY STATE AT FULL LOAD
Submit Document Feedback
15
AN1739.0
April 22, 2014
Application Note 1739
Test Data for ISL8200AMEVAL2PHZ
(Continued)
PHASE2 5V/DIV
PHASE2 5V/DIV
VOUT RIPPLE 50mV/DIV
VOUT RIPPLE 50mV/DIV
PHASE3 5V/DIV
PHASE3 5V/DIV
1µs/DIV
1µs/DIV
FIGURE 39. STEADY STATE AT NO LOAD, VIN = 5V
FIGURE 40. STEADY STATE AT 20A LOAD, V IN = 5V
M1: VOUT 5VIN 20mV/DIV
M2: VOUT 12VIN 50mV/DIV
M4: VOUT 20VIN 50mV/DIV
IOUT 10A/DIV
100µs/DIV
FIGURE 41. LOAD TRANSIENT
5V Waveforms
VOUT 2V/DIV
VOUT 2V/DIV
PG 2V/DIV
PG 2V/DIV
1ms/DIV
FIGURE 42. START-UP AT NO LOAD, V IN = 12V, VOUT = 5V
Submit Document Feedback
16
200ms/DIV
FIGURE 43. SHUTDOWN AT NO LOAD, V IN = 12V, VOUT = 5V
AN1739.0
April 22, 2014
Application Note 1739
Test Data for ISL8200AMEVAL2PHZ
VOUT 2V/DIV
(Continued)
VOUT 2V/DIV
IOUT 5A/DIV
IOUT 5A/DIV
PG 2V/DIV
PG 2V/DIV
1ms/DIV
1ms/DIV
FIGURE 44. START-UP AT 20A LOAD, V IN = 12V, VOUT = 5V
FIGURE 45. SHUTDOWN AT 20A LOAD, V IN = 12V, VOUT = 5V
M2: VOUT RIPPLE 12VIN 50mV/DIV
M4: VOUT RIPPLE 20VIN 50mV/DIV
M2: VOUT RIPPLE 12VIN 50mV/DIV
M4: VOUT RIPPLE 20VIN 50mV/DIV
1µs/DIV
1µs/DIV
FIGURE 46. STEADY STATE NO LOAD, 5VOUT
FIGURE 47. STEADY STATE AT FULL LOAD, 5VOUT
PHASE2 10V/DIV
PHASE2 10V/DIV
VOUT RIPPLE 50mV/DIV
VOUT RIPPLE 50mV/DIV
PHASE3 10V/DIV
PHASE3 10V/DIV
1µs/DIV
1µs/DIV
FIGURE 48. STEADY STATE AT NO LOAD, 12VIN , 5VOUT
FIGURE 49. STEADY STATE AT FULL LOAD, 12V IN , 5VOUT
Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is
cautioned to verify that the Application Note or Technical Brief is current before proceeding.
For information regarding Intersil Corporation and its products, see www.intersil.com
Submit Document Feedback
17
AN1739.0
April 22, 2014