RFP14N06 Data Sheet 14A, 60V, 0.100 Ohm, N-Channel Power MOSFET This N-Channel power MOSFET is manufactured using the MegaFET process. This process which uses feature sizes approaching those of LSI integrated circuits, gives optimum utilization of silicon, resulting in outstanding performance. It was designed for use in applications such as switching regulators, switching convertors, motor drivers, and relay drivers. This transistor can be operated directly from integrated circuits. Formerly developmental type TA09770. Ordering Information PART NUMBER PACKAGE BRAND July 1999 File Number 4002.3 Features • 14A, 60V • rDS(ON) = 0.100Ω • Temperature Compensating PSPICE® Model • Peak Current vs Pulse Width Curve • UIS Rating Curve • 175oC Operating Temperature • Related Literature - TB334 “Guidelines for Soldering Surface Mount Components to PC Boards” Symbol D RFP14N06 TO-220AB RFP14N06 NOTE: When ordering, use the entire part number. G S Packaging TO-220AB SOURCE DRAIN GATE DRAIN (FLANGE) 4-492 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures PSPICE® is a registered trademark of MicroSim Corporation. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 RFP14N06 Absolute Maximum Ratings TC = 25oC Unless Otherwise Specified Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Linear Derating Factor Above TC = 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg RFP14N06 60 60 ±20 14 Refer to Peak Current Curve Refer to UIS Curve 48 0.32 -55 to 175 UNITS V V V A 300 260 oC oC W W/oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 150oC. Electrical Specifications TC = 25oC, Unless Otherwise Specified MIN TYP MAX UNITS Drain to Source Breakdown Voltage PARAMETER SYMBOL BVDSS ID = 250µA, VGS = 0V (Figure 11) 60 - - V Gate Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA, (Figure 10) 2 - 4 V VDS = Rated BVDSS, VGS = 0V - - 1 µA VDS = 0.8 x Rated BVDSS, VGS = 0V, TC = 150oC - - 25 µA Zero Gate Voltage Drain Current IDSS VGS = ±20V - - ±100 nA rDS(ON) ID = 14A, VGS = 10V, (Figure 9) - - 0.100 Ω tON VDD =30V, ID = 7A, RL = 4.3Ω, VGS = 10V, RGS = 25Ω (Figure 13) - - 60 ns Gate to Source Leakage Current Drain to Source On Resistance (Note 2) IGSS Turn-On Time Turn-On Delay Time td(ON) - 14 - ns tr - 26 - ns td(OFF) - 45 - ns tf - 17 - ns tOFF - - 100 ns Rise Time Turn-Off Delay Time Fall Time Turn-Off Time Total Gate Charge TEST CONDITIONS Qg(TOT) VGS = 0V to 20V Gate Charge at 10V Qg(10) VGS = 0V to 10V Threshold Gate Charge Qg(TH) VGS = 0V to 2V VDD = 48V, ID = 14A, RL = 3.42Ω, IG(REF) = 0.4mA (Figure 13) - - 40 nC - - 25 nC - - 1.5 nC - 570 - pF Input Capacitance CISS Output Capacitance COSS - 185 - pF Reverse Transfer Capacitance CRSS - 50 - pF Thermal Resistance Junction to Case RθJC - - 3.125 oC/W Thermal Resistance Junction to Ambient RθJA - - 62 oC/W VDS = 25V, VGS = 0V, f = 1MHz (Figure 12) TO-220AB Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage VSD Diode Reverse Recovery Time trr MIN TYP MAX UNITS ISD = 14A TEST CONDITIONS - - 1.5 V ISD = 14A, dISD/dt = 100A/µs - - 125 ns NOTES: 2. Pulse test: pulse width ≤ 300µs, duty cycle ≤ 2%. 3. Repetitive rating: pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3) and Peak Current Capability Curve (Figure 5). 4-493 RFP14N06 Typical Performance Curves Unless Otherwise Specified POWER DISSIPATION MULTIPLIER 1.2 16 ID, DRAIN CURRENT (A) 1.0 0.8 0.6 0.4 12 8 4 0.2 0 0 25 50 75 100 125 150 0 175 25 50 TC , CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE 75 100 125 TC, CASE TEMPERATURE (oC) 150 175 FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE ZθJC, NORMALIZED THERMAL IMPEDANCE 1 0.5 0.2 0.1 0.1 PDM 0.05 0.02 0.01 t1 t2 SINGLE PULSE NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJA x RθJA + TA 0.01 10-5 10-4 10-2 10-1 10-3 t, RECTANGULAR PULSE DURATION (s) 100 101 FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE TC = 25oC TJ = MAX RATED SINGLE PULSE 100µs 10 1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 1 10ms 100ms DC 10 100 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 4. FORWARD BIAS SAFE OPERATING AREA 4-494 200 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION IDM, PEAK CURRENT (A) ID, DRAIN CURRENT (A) 100 FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 100 175 – T C I = I 25 --------------------- 150 VGS = 10V TC = 25oC VGS = 20V 10 10-5 10-4 10-3 10-2 10-1 t, PULSE WIDTH (s) 100 FIGURE 5. PEAK CURRENT CAPABILITY 101 RFP14N06 Typical Performance Curves Unless Otherwise Specified (Continued) 35 VGS = 20V 30 VGS = 10V ID, DRAIN CURRENT (A) IAS, AVALANCHE CURRENT (A) 50 STARTING TJ = 25oC 10 STARTING TJ = 150oC If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) 0.01 VGS = 7V 20 15 VGS = 6V 10 VGS = 5V 5 If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS-VDD) +1] 1 VGS = 8V 25 PULSE DURATION = 250µs DUTY CYCLE = 0.5% MAX TC = 25oC VGS = 4.5V 0.1 1 tAV, TIME IN AVALANCHE (ms) 0 10 6 2 4 VDS , DRAIN TO SOURCE VOLTAGE (V) 0 8 NOTE: Refer to Intersil Application Notes AN9321 and AN9322 35 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 30 FIGURE 7. SATURATION CHARACTERISTICS 2.5 25oC -55oC 175oC 25 20 15 10 5 NORMALIZED DRAIN TO SOURCE ON RESISTANCE IDS(ON), DRAIN TO SOURCE CURRENT (A) FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING 2.0 1.5 1.0 0.5 0 -80 0 0 2 4 6 8 VGS, GATE TO SOURCE VOLTAGE (V) PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 14A 10 2.0 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE NORMALIZED GATE THRESHOLD VOLTAGE VGS = VDS, ID = 250µA 1.5 1.0 0.5 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) 200 FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 4-495 40 80 120 160 200 FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 2.0 -40 0 TJ, JUNCTION TEMPERATURE (oC) FIGURE 8. TRANSFER CHARACTERISTICS 0 -80 -40 ID = 250µA 1.5 1.0 0.5 0 -80 -40 0 40 80 120 160 200 TJ , JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE RFP14N06 Unless Otherwise Specified (Continued) 700 VDS, DRAIN TO SOURCE VOLTAGE (V) 60 CISS C, CAPACITANCE (pF) 600 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS ≈ CDS + CGD 500 400 COSS 300 200 CRSS 100 VDD = BVDSS 5 10 15 20 VDS, DRAIN TO SOURCE VOLTAGE (V) VDD = BVDSS 45 7.5 30 5.0 0.75 BVDSS 0.50 BVDSS 0.25 BVDSS 15 2.5 RL = 4.28Ω IG(REF) = 0.4mA VGS = 10V 0 0 0 10 0 25 20 IG(REF) t, TIME (µs) IG(ACT) 80 VGS, GATE TO SOURCE VOLTAGE (V) Typical Performance Curves IG(REF) IG(ACT) NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 13. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT Test Circuits and Waveforms VDS BVDSS L tP VARY tP TO OBTAIN REQUIRED PEAK IAS + RG VDS IAS VDD VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS tON tOFF td(ON) VDS td(OFF) tf tr VDS 90% 90% RL VGS + DUT RGS VGS - VDD 90% VGS 0 FIGURE 16. SWITCHING TIME TEST CIRCUIT 4-496 10% 10% 0 10% 50% 50% PULSE WIDTH FIGURE 17. RESISTIVE SWITCHING WAVEFORMS RFP14N06 Test Circuits and Waveforms (Continued) VDS VDD RL Qg(TOT) VDS VGS = 20V VGS Qg(10) + VDD DUT Ig(REF) VGS = 10V VGS - VGS = 2V 0 Qg(TH) Ig(REF) 0 FIGURE 18. GATE CHARGE TEST CIRCUIT 4-497 FIGURE 19. GATE CHARGE WAVEFORM RFP14N06 PSPICE Electrical Model .SUBCKT RFP14N06 2 1 3 ; rev 9/12/94 CA 12 8 8.84e-10 CB 15 14 9.34e-10 CIN 6 8 5.2e-10 DPLCAP RSCL1 + 51 5 51 ESG + IT 8 17 1 GATE 9 1 LGATE 20 EVTO + 18 6 8 ESCL 17 EBREAK 18 VTO - + 21 6 S1A S1B S2A S2B DBODY - CIN 8 S1A RSOURCE 7 LSOURCE 3 SOURCE S2A 14 13 13 8 S1B RBREAK 15 17 18 S2B 13 RVTO CB CA MOS2 + MOS1 MOS1 16 6 8 8 MOSMOD M = 0.99 MOS2 16 21 8 8 MOSMOD M = 0.01 12 11 RDRAIN 16 8 RGATE DBREAK 50 RIN RBREAK 17 18 RBKMOD 1 RDRAIN 50 16 RDSMOD 2.2e-3 RGATE 9 20 5.64 RIN 6 8 1e9 RSCL1 5 51 RSCLMOD 1e-6 RSCL2 5 50 1e3 RSOURCE 8 7 RDSMOD 42.3e-3 RVTO 18 19 RVTOMOD 1 DRAIN 2 LDRAIN RSCL2 EBREAK 11 7 17 18 62.87 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTO 20 6 18 8 1 LDRAIN 2 5 1e-9 LGATE 1 9 4.34e-9 LSOURCE 3 7 3.79e-9 5 10 DBODY 7 5 DBDMOD DBREAK 5 11 DBKMOD DPLCAP 10 5 DPLCAPMOD + EGS - 6 8 + EDS - 14 5 8 IT 19 VBAT + 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 8 19 DC 1 VTO 21 6 0.82 ESCL 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)*1e6/50,6))} .MODEL DBDMOD D (IS = 1.5e-13 RS = 10.9e-3 TRS1 = 2.3e-3 TRS2 = -1.75e-5 CJO = 6.84e-10 TT = 4.2e-8) .MODEL DBKMOD D (RS = 4.15e-1 TRS1 = 3.73e-3 TRS2 = -3.21e-5) .MODEL DPLCAPMOD D (CJO = 26.2e-11 IS = 1e-30 N = 10) .MODEL MOSMOD NMOS (VTO = 3.91 KP = 12.68 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL RBKMOD RES (TC1 = 7.73e-4 TC2 = 2.12e-6) .MODEL RDSMOD RES (TC1 = 5.0e-3 TC2 = 2.53e-5) .MODEL RSCLMOD RES (TC1 = 2.05e-3 TC2 = 1.35e-5) .MODEL RVTOMOD RES (TC1 = -4.44e-3 TC2 = -6.45e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -5.29 VOFF= -3.29) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.29 VOFF= -5.29) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.25 VOFF= 2.75) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.75 VOFF= -2.25) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; written by William J. Hepp and C. Frank Wheatley. 4-498 RFP14N06 All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 4-499 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029