RFG40N10LE, RFP40N10LE, RF1S40N10LESM Data Sheet October 1999 40A, 100V, 0.040 Ohm, Logic Level N-Channel Power MOSFETs File Number 4061.5 Features • 40A, 100V These N-Channel enhancement mode power MOSFETs are manufactured using the latest manufacturing process technology. This process, which uses feature sizes approaching those of LSI integrated circuits gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers and relay drivers. These transistors can be operated directly from integrated circuits. • rDS(ON) = 0.040Ω • Temperature Compensating PSPICE® Model • Peak Current vs Pulse Width Curve • UIS Rating Curve • 175oC Operating Temperature Formerly developmental type TA49163. • Related Literature - TB334 “Guidelines for Soldering Surface Mount Components to PC Boards” Ordering Information Symbol PART NUMBER PACKAGE BRAND RFG40N10LE TO-247 FG40N10L RFP40N10LE TO-220AB FP40N10L RF1S40N10LESM TO-263AB F40N10LE D G NOTE: When ordering, use the entire part number. Add the suffix, 9A, to obtain the TO-263AB variant in tape and reel, i.e. RF1S40N10LESM9A. S Packaging JEDEC STYLE TO-247 JEDEC TO-220AB SOURCE DRAIN GATE SOURCE DRAIN GATE DRAIN (FLANGE) DRAIN (FLANGE) JEDEC TO-263AB DRAIN (FLANGE) GATE SOURCE 1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures. PSPICE® is a registered trademark of MicroSim Corporation. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 RFG40N10LE, RFP40N10LE, RF1S40N10LESM Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified Drain to Source Breakdown Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Single Pulse Avalanche Energy Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation (Figure 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg RFG40N10LE, RFP40N10LE, RF1S40N10LESM 100 100 ±10 40 Refer to Peak Current Curve Refer to UIS Curve 150 1.00 -55 to 175 UNITS V V V A W W/oC oC oC oC 300 260 CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 150oC. TC = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 100 - - V VGS = VDS, ID = 250µA (Figure 12) 1 - 3 V VDS = 95V, VGS = 0V - - 1 µA VDS = 90V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±10V - - 10 µA ID = 40A, VGS = 5V - - 0.040 Ω VDD = 50V, ID = 40A, RL = 1.25Ω, VGS = 5V, RGS = 2.5Ω (Figures 10, 18, 19) - - 200 ns - 22 - ns Drain to Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V (Figure 13) Gate Threshold Voltage VGS(TH) Zero Gate Voltage Drain Current IDSS Gate to Source Leakage Current IGSS Drain to Source On Resistance (Note 2) rDS(ON) Turn-On Time tON Turn-On Delay Time td(ON) tr - 140 - ns td(OFF) - 70 - ns tf - 65 - ns tOFF - - 165 ns Rise Time Turn-Off Delay Time Fall Time Turn-Off Time Total Gate Charge Qg(TOT) VGS = 0V to 10V Gate Charge at 5V Qg(5) VGS = 0V to 5V Qg(TH) VGS = 0V to 1V Threshold Gate Charge Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDD = 80V, ID = 40A, RL = 2.0Ω (Figures 20, 21) VDS = 25V, VGS = 0V, f = 1MHz (Figure 14) - 145 180 nC - 85 105 nC - 3 4 nC - 3000 - pF - 500 - pF - 200 - pF Thermal Resistance Junction-to-Case RθJC All Packages - - 1.0 oC/W Thermal Resistance Junction-to-Ambient RθJA TO-247 - - 30 oC/W TO-220AB and TO-263AB - - 80 oC/W Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage VSD Diode Reverse Recovery Time trr MIN TYP MAX UNITS ISD = 40A TEST CONDITIONS - - 1.5 V ISD = 40A, dISD/dt = 100A/µs - - 205 ns NOTES: 2. Pulse test: pulse width ≤ 80µs, duty cycle ≤ 2%. 3. Repetitive rating: pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3). 2 RFG40N10LE, RFP40N10LE, RF1S40N10LESM Unless Otherwise Specified 1.2 50 1.0 40 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER Typical Performance Curves 0.8 0.6 0.4 0.2 30 20 10 0 0 0 125 50 75 100 TC , CASE TEMPERATURE (oC) 25 25 175 150 50 75 100 125 175 150 TC, CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 0.5 0.2 0.1 0.1 PDM 0.05 t1 t2 0.02 0.01 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 t, RECTANGULAR PULSE DURATION (s) 100 101 FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE TC = 25oC TJ = 175oC 100 100µs 1ms 10 10ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 1 10 100 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 4. FORWARD BIAS SAFE OPERATING AREA 3 200 500 IDM, PEAK CURRENT CAPABILITY (A) ID, DRAIN CURRENT (A) 500 VGS = 10V VGS = 5V FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 175 – TC I = I 25 ---------------------- 150 100 THERMAL IMPEDANCE MAY LIMIT CURRENT IN THIS REGION TC = 25oC 10 10-5 10-4 10-3 10-2 10-1 t, PULSE WIDTH (s) 100 FIGURE 5. PEAK CURRENT CAPABILITY 101 RFG40N10LE, RFP40N10LE, RF1S40N10LESM Typical Performance Curves Unless Otherwise Specified (Continued) 80 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 100 ID, DRAIN CURRENT (A) IAS, AVALANCHE CURRENT (A) 500 STARTING TJ = 25oC 10 STARTING TJ = 150oC VGS = 10V VGS = 5V VGS = 4V 60 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC 40 VGS = 3V 20 VGS = 2.5V 1 0.001 0.01 0.1 1 0 10 0 1.5 tAV, TIME IN AVALANCHE (ms) NOTE: Refer to Intersil Application Notes AN9321 and AN9322. VDD = 15V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 60 -55oC ID = 40A ID = 10A 175oC 20 ID = 80A 75 50 ID = 20A 25 PULSE DURATION = 80µs, VDD = 15V DUTY CYCLE = 0.5% MAX. 0 0 1.5 3.0 4.5 6.0 2.0 2.5 VGS, GATE TO SOURCE VOLTAGE (V) 700 NORMALIZED DRAIN TO SOURCE ON RESISTANCE tr 400 tf 300 200 td(ON) 100 0 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 10. SWITCHING TIME vs GATE RESISTANCE 4 4.5 5.0 2.50 600 500 4.0 FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT td(OFF) VDD = 50V, ID = 40A, RL= 1.25Ω 3.5 3.0 VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 8. TRANSFER CHARACTERISTICS SWITCHING TIME (ns) 6.0 100 25oC 40 0 4.5 FIGURE 7. SATURATION CHARACTERISTICS rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) IDS(ON), DRAIN TO SOURCE CURRENT (A) FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING 80 3.0 VDS, DRAIN TO SOURCE VOLTAGE (V) 50 2.00 PULSE DURATION = 80µs, DUTY CYCLE = 0.5% MAX. VGS = 5V, ID = 40A 1.50 1.00 0.50 0 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 200 RFG40N10LE, RFP40N10LE, RF1S40N10LESM Typical Performance Curves Unless Otherwise Specified (Continued) 1.50 1.50 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.25 1.00 0.75 0.50 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 12. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE CISS C, CAPACITANCE (pF) 2800 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS ≈ CDS + CGD 2100 1400 COSS 700 CRSS 5 10 15 20 0.75 -40 160 0 40 80 120 TJ , JUNCTION TEMPERATURE (oC) 200 5.00 100 0 0 1.00 FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE VDS , DRAIN TO SOURCE VOLTAGE (V) 3500 1.25 0.50 -80 200 ID = 250µA VDD = BVDSS VDD = BVDSS 75 3.75 RL = 2.5Ω IG(REF) = 1.7mA VGS = 5V 50 25 25 1.25 0 0 I G ( REF ) 20 ---------------------I G ( ACT ) VDS, DRAIN TO SOURCE VOLTAGE (V) 2.50 PLATEAU VOLTAGES IN DESCENDING ORDER: VDD = BVDSS VDD = 0.75 BVDSS VDD = 0.50 BVDSS VDD = 0.25 BVDSS VGS , GATE TO SOURCE VOLTAGE (V) NORMALIZED GATE THRESHOLD VOLTAGE VGS = VDS, ID = 250µA I G ( REF ) 80 ---------------------I G ( ACT ) t, TIME (µs) NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 15. SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS tP + RG VDS IAS VDD VDD - VGS DUT 0V tP IAS 0 0.01Ω tAV FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT 5 FIGURE 17. UNCLAMPED ENERGY WAVEFORMS RFG40N10LE, RFP40N10LE, RF1S40N10LESM Test Circuits and Waveforms (Continued) tON tOFF td(ON) VDS td(OFF) tf tr VDS 90% 90% RL VGS + - DUT 10% 10% 0 VDD 90% RGS VGS VGS 0 10% FIGURE 18. SWITCHING TIME TEST CIRCUIT 50% 50% PULSE WIDTH FIGURE 19. RESISTIVE SWITCHING WAVEFORMS VDS VDD RL Qg(TOT) VDS Qg(10) OR Qg(5) VGS + VDD VGS DUT Ig(REF) VGS = 2V 0 VGS = 1V FOR L2 DEVICES Qg(TH) VGS = 20V VGS = 10V FOR L2 DEVICES VGS = 10V VGS = 5V FOR L2 DEVICES Ig(REF) 0 FIGURE 20. GATE CHARGE TEST CIRCUIT 6 FIGURE 21. GATE CHARGE WAVEFORMS RFG40N10LE, RFP40N10LE, RF1S40N10LESM PSPICE Electrical Model SUBCKT 40N10LE 2 1 3 ; rev 8/15/95 CA 12 8 3.50e-9 CB 15 14 3.50e-9 CIN 6 8 1.70e-9 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD LDRAIN DPLCAP DRAIN 2 5 10 5 51 ESLC 11 - RDRAIN 6 8 EVTHRES + 19 8 + LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 21 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD + 17 EBREAK 18 50 - IT 8 17 1 LSOURCE CIN 8 SOURCE 3 7 RSOURCE RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 2.04e-2 RGATE 9 20 2.15 RLDRAIN 2 5 10 RLGATE 1 9 51.7 RLSOURCE 3 7 21.3 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 4.85e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B DBREAK + RSLC2 ESG LDRAIN 2 5 1.00e-9 LGATE 1 9 5.17e-9 LSOURCE 3 7 2.13e-9 RLDRAIN RSLC1 51 EBREAK 11 7 17 18 120.7 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RLSOURCE S2A S1A 12 S1B CA 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 VBAT 5 8 EDS - - IT 14 + + 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD RBREAK 15 14 13 13 8 - + 8 22 RVTHRES VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*79),3.5))} .MODEL DBODYMOD D (IS = 1.96e-12 RS = 3.87e-3 TRS1 = 9.93e-4 TRS2 = 4.97e-6 CJO = 1.53e-9 TT = 7.41e-8 M = 0.50) .MODEL DBREAKMOD D (RS = 3.12e-1 TRS1 = 1.07e-3 TRS2 = 0) .MODEL DPLCAPMOD D (CJO = 1.97e-9 IS = 1e-30 M = 0.87) .MODEL MMEDMOD NMOS (VTO = 1.73 KP = 2.80 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.15) .MODEL MSTROMOD NMOS (VTO = 2.04 KP = 80 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.50 KP = 0.10 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 21.5 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 9.74e-4 TC2 = -3.71e-7) .MODEL RDRAINMOD RES (TC1 = 9.71e-3 TC2 = 2.90e-5) .MODEL RSLCMOD RES (TC1 = 2.17e-3 TC2 = 1.27e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 0) .MODEL RVTHRESMOD RES (TC1 = -2.08e-3 TC2 = -6.82e-6) .MODEL RVTEMPMOD RES (TC1 = -1.52e-3 TC2 = -1.21e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -6.00 VOFF= -1.50) VON = -1.50 VOFF= -6.00) VON = -0.50 VOFF= 0.0) VON = 0.0 VOFF= -0.50) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 7 RFG40N10LE, RFP40N10LE, RF1S40N10LESM All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 8 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029