ISL28274, ISL28474 ® Data Sheet December 13, 2006 Micropower, Single Supply, Rail-to-Rail Input-Output Instrumentation Amplifier and Precision Operational Amplifier The ISL28274 is a combination of a micropower instrumentation amplifier (Amp A) with a low power precision amplifier (Amp B) in a single package. The ISL28474 consist of two micropower instrumentation amplifiers (Amp A) and two low power precision amplifiers (Amp B) in a single package. The amplifiers are optimized for operation at 2.4V to 5V single supplies. Inputs and outputs can operate rail-torail. As with all instrumentation amplifiers, a pair of inputs provide a high common-mode rejection and are completely independent from a pair of feedback terminals. The feedback terminals allow zero input to be translated to any output offset, including ground. A feedback divider controls the overall gain of the amplifier. The additional precision amplifier can be used to generate higher gain, with smaller feedback resistors or used to generate a reference voltage. The instrumentation amp (Amp A) is compensated for a gain of 100 or more and the precision amp (Amp B) is unity gain stable. Both amplifiers have PMOS inputs that provide less than 30pA input bias currents. FN6345.0 Features • Combination of IN-AMP and OP-AMP in a single package • 120µA supply current for ISL28274 • Input Offset Voltage IN-AMP 400µV max • Input Offset Voltage OP-AMP 225µV max • 30pA max input bias current • 100dB CMRR and PSRR • Single supply operation of 2.4V to 5.0V • Ground Sensing • Input voltage range is rail-to-rail and output swings rail-to-rail • Pb-free plus anneal available (RoHS compliant) Applications • 4-20mA loops • Industrial Process Control • Medical Instrumentations The amplifiers can be operated from one lithium cell or two Ni-Cd batteries. The amplifiers input range goes from below ground to slightly above positive rail. The output stage swings completely to ground or positive supply - no pull-up or pull-down resistors are needed. Ordering Information PART NUMBER (Note) ISL28274FAZ PART MARKING 28274FAZ ISL28274FAZ-T7 28274FAZ Coming Soon ISL28474FAZ QTY. PER PACKAGE TUBE/REEL (Pb-Free) 97/Tube PKG. DWG. # 16 Ld QSOP MDP0040 7” 16 Ld QSOP MDP0040 (1000 pcs) Tape & Reel ISL28474FAZ 55 /Tube 24 Ld QSOP MDP0040 Coming Soon ISL28474FAZ 7” 24 Ld QSOP MDP0040 ISL28474FAZ-T7 (1000 pcs) Tape & Reel NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright © Intersil Americas Inc. 2006. All Rights Reserved. All other trademarks mentioned are the property of their respective owners. ISL28274, ISL28474 Pinout ISL28474 (16 LD QSOP) TOP VIEW ISL28274 (16 LD QSOP) TOP VIEW IA OUT_1 1 24 IA OUT_2 16 V+ IA FB+_1 2 23 IA FB+_2 IA OUT 2 15 OUT IA FB-_1 3 IA FB+ 3 14 NC IA IN-_1 4 21 IA IN-_2 13 NC IA IN+_1 5 20 IA IN+_2 IA IN- 5 12 IN- IA EN_1 6 19 IA EN_2 IA IN+ 6 11 IN+ V+ 7 IA EN 7 10 EN EN_1 8 17 EN_2 V- 8 9 NC IN+_1 9 16 IN+_2 IA = Instrumentation Amplifier IN-_1 10 15 IN-_2 A = Instrumentation Amplifier NC 11 B = Precision Amplifier 22 IA FB-_2 18 V- + - B A B - + A + - + - - + B OUT_1 12 14 NC 13 OUT_2 IA = Instrumentation Amplifier A = Instrumentation Amplifier B = Precision Amplifier + + - IA FB- 4 A - + NC 1 2 FN6345.0 December 13, 2006 + + - ISL28274, ISL28474 Absolute Maximum Ratings (TA = +25°C) Thermal Information Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5V Supply Turn On Voltage Slew Rate . . . . . . . . . . . . . . . . . . . . . 1V/μs Input Current (IN, FB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA Differential Input Voltage (IN, FB) . . . . . . . . . . . . . . . . . . . . . . . 0.5V Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . V- - 0.5V to V+ + 0.5V ESD tolerance, Human Body Model . . . . . . . . . . . . . . . . . . . . . .3kV ESD tolerance, Machine Model . . . . . . . . . . . . . . . . . . . . . . . . .300V Thermal Resistance θJA (°C/W) 16 Ld QSOP Package . . . . . . . . . . . . . . . . . . . . . . . 112 24 Ld QSOP Package . . . . . . . . . . . . . . . . . . . . . . . 88 Output Short-Circuit Duration . . . . . . . . . . . . . . . . . . . . . . .Indefinite Ambient Operating Temperature Range . . . . . . . . .-40°C to +125°C Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . +125°C CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: TJ = TC = TA Electrical Specifications PARAMETER VOS INSTRUMENTATION AMPLIFIER “A” V+ = +5V, VS- = GND, VCM = 1/2VS+ TA = +25°C, unless otherwise specified. For ISL28274 ONLY. Boldface limits apply over the operating temperature range, -40°C to +125°C. DESCRIPTION CONDITIONS Input Offset Voltage MIN TYP MAX UNIT 400 -750 35 400 750 µV Input Offset Voltage Temperature Coefficient Temperature = -40°C to +125°C Input Offset Current between IN+ and IN-, and between FB+ and FB- (see Figure 44 for extended temperature range) -40°C to +85°C -30 -80 ±5 30 80 pA IB Input Bias Current (IN+, IN-, FB+, and (see Figure 36 and 37 for extended temperature FB- terminals) range) -40°C to +85°C -30 -80 ±10 30 80 pA eN Input Noise Voltage f = 0.1Hz to 10Hz Input Noise Voltage Density Input Noise Current Density TCVOS IOS iN 0.7 µV/°C 0.75 µVP-P fo = 1kHz 210 nV/√Hz fo = 1kHz 0.65 pA/√Hz 1 GΩ RIN Input Resistance VIN Input Voltage Range V+ = 2.4V to 5.0V 0 CMRR Common Mode Rejection Ratio VCM = 0V to 5V 80 75 100 dB PSRR Power Supply Rejection Ratio V+ = 2.4V to 5V 80 75 100 dB EG Gain Error RL = 100kΩ to 2.5V -0.2 % SR Slew Rate RL = 1kΩ to GND GBWP Gain Bandwidth Product Electrical Specifications PARAMETER 0.40 0.35 V+ 0.5 0.65 0.70 2.5 V V/µs MHz OPERATIONAL AMPLIFIER “B” VS+ = +5V, VS- = GND, VCM = 1/2VS+ TA = +25°C, unless otherwise specified. For ISL28274 ONLY. Boldface limits apply over the operating temperature range, -40°C to +125°C. DESCRIPTION CONDITIONS MIN TYP MAX UNIT -225 -450 ±20 225 450 µV VOS Input Offset Voltage ΔV OS -----------------ΔTime Long Term Input Offset Voltage Stability 1.2 µV/Mo ΔV OS ---------------ΔT Input Offset Drift vs Temperature 2.2 µV/°C IOS Input Offset Current 3 (see Figure 46 for extended temperature range) -40°C to +85°C -30 -80 ±5 30 80 pA FN6345.0 December 13, 2006 ISL28274, ISL28474 Electrical Specifications PARAMETER OPERATIONAL AMPLIFIER “B” VS+ = +5V, VS- = GND, VCM = 1/2VS+ TA = +25°C, unless otherwise specified. For ISL28274 ONLY. Boldface limits apply over the operating temperature range, -40°C to +125°C. (Continued) DESCRIPTION CONDITIONS MIN TYP MAX UNIT -30 -80 ±10 30 80 pA IB Input Bias Current (see Figure 40 and 41for extended temperature range) -40°C to +85°C eN Input Noise Voltage Peak-to-Peak f = 0.1Hz to 10Hz 5.4 µVPP Input Noise Voltage Density fO = 1kHz 50 nV/√Hz iN Input Noise Current Density fO = 1kHz 0.14 pA/√Hz CMIR Input Voltage Range Guaranteed by CMRR test 0 CMRR Common-Mode Rejection Ratio VCM = 0V to 5V 80 75 100 dB PSRR Power Supply Rejection Ratio V+ = 2.4V to 5V 85 80 105 dB AVOL Large Signal Voltage Gain VO = 0.5V to 4.5V, RL = 100kΩ 200 190 300 V/mV SR Slew Rate 0.12 0.09 ±0.14 GBW Gain Bandwidth Product Electrical Specifications PARAMETER VOUT 5 0.16 0.21 300 V V/µs kHz COMMON ELECTRICAL SPECIFICATIONS V+ = 5V, V- = GND, VCM = 1/2VS+ TA = 25°C, unless otherwise specified.For ISL28274 ONLY. Boldface limits apply over the operating temperature range, -40°C to +125°C. DESCRIPTION Maximum Output Voltage Swing CONDITIONS MIN Output low, RL = 100kΩ Output low, RL = 1kΩ TYP MAX UNIT 3 6 30 mV 130 175 225 mV Output high, RL = 100kΩ 4.990 4.97 4.996 V Output high, RL = 1kΩ 4.800 4.750 4.880 V IS,ON Supply Current, Enabled ISL28274 All channels enabled 120 ISL28474 All channels enabled 240 IS,OFF Supply Current, Disabled ISL28274 All channels enabled 4 ISL28474 All channels enabled 8 µA 156 175 µA 7 9 µA µA ISC+ Short Circuit Sourcing Capability RL = 10Ω 28 25 31 mA ISC- Short Circuit Sinking Capability RL = 10Ω 24 20 26 mA VS Minimum Supply Voltage VINH Enable Pin High Level VINL Enable Pin Low Level IENH Enable Pin Input Current VEN = 5V IENL Enable Pin Input Current VEN = 0V 4 2.4 V 2 V 0.8 V 0.8 1 1.3 µA 0 26 50 100 µA FN6345.0 December 13, 2006 ISL28274, ISL28474 Typical Performance Curves 90 90 COMMON-MODE INPUT = V+ COMMON-MODE INPUT = 1/2V+ GAIN = 10,000 GAIN = 10,000 80 80 70 GAIN = 5,000 GAIN = 2,000 GAIN (dB) GAIN (dB) GAIN = 5,000 GAIN = 1,000 60 GAIN = 500 50 GAIN = 200 70 GAIN = 500 50 GAIN = 200 GAIN = 100 40 30 1 10 100 1k 10k FREQUENCY (Hz) 100k 30 1M FIGURE 1. AMPLIFIER “A”(INAMP) FREQUENCY RESPONSE vs CLOSED LOOP GAIN 1 10 100 1k 10k FREQUENCY (Hz) 100k 1M FIGURE 2. AMPLIFIER “A”(INAMP) FREQUENCY RESPONSE vs CLOSED LOOP GAIN. VCM = 1/2V+ 45 90 COMMON-MODE INPUT = VM +10mV GAIN = 10,000 40 GAIN = 5,000 35 80 VS = 5V 30 70 GAIN = 2,000 GAIN (dB) GAIN (dB) GAIN = 1,000 60 GAIN = 100 40 GAIN = 1,000 60 GAIN = 500 50 VS = 2.4V 25 20 AV = 100 RL = 10kΩ CL = 10pF RF/RG = 100 RF = 10kΩ RG = 100Ω 15 GAIN = 200 10 GAIN = 100 40 5 0 30 1 10 100 1k 10k FREQUENCY (Hz) 100k 1M 10k 100k 1M 100 1200pF 820pF AV = 100 R = 10kΩ CL = 10pF RF/RG = 100 RF = 10kΩ RG = 100Ω 10 100 CMRR (dB) 2200pF 40 25 1k 120 45 30 100 FIGURE 4. AMPLIFIER “A”(INAMP) FREQUENCY RESPONSE vs SUPPLY VOLTAGE 50 35 10 FREQUENCY (Hz) FIGURE 3. AMPLIFIER “A”(INAMP) FREQUENCY RESPONSE vs CLOSED LOOP GAIN GAIN (dB) GAIN = 2,000 80 60 AV = 100 40 56pF 20 1k 10k 100k FREQUENCY (Hz) FIGURE 5. AMPLIFIER “A”(INAMP) FREQUENCY RESPONSE vs CLOAD 5 1M 0 10 100 1k 10k 100k 1M FREQUENCY (Hz) FIGURE 6. AMPLIFIER “A”(INAMP) CMRR vs FREQUENCY FN6345.0 December 13, 2006 ISL28274, ISL28474 Typical Performance Curves (Continued) 700 INPUT VOLTAGE NOISE (nV/√Hz) 120 100 PSRR (dB) 80 PSRR+ 60 PSRR- 40 AV = 100 20 600 500 400 300 AV = 100 200 100 0 0 10 100 1k 10k 100k 1 1M 10 100 1k 10k 100k FREQUENCY (Hz) FREQUENCY (Hz) FIGURE 8. AMPLIFIER “A”(INAMP) INPUT VOLTAGE NOISE SPECTRAL DENSITY FIGURE 7. AMPLIFIER “A”(INAMP) PSRR vs FREQUENCY 2.0 VOLTAGE NOISE (2µV/DIV) CURRENT NOISE (pA/√Hz) 1.8 1.6 1.4 1.2 1.0 0.8 AV = 100 0.6 0.4 0.2 0.0 1 10 100 1k 10k 100k TIME (1s/DIV) FREQUENCY (Hz) FIGURE 9. AMPLIFIER “A”(INAMP) INPUT CURRENT NOISE SPECTRAL DENSITY FIGURE 10. AMPLIFIER “A”(INAMP) 0.1 Hz TO 10Hz INPUT VOLTAGE NOISE 45 +1 0 40 VS = ±2.5V RL = 1k -1 35 VS = ±1.2V RL = 10k 30 GAIN (dB) -2 GAIN (dB) VS = ±1.2V RL = 1k VS = ±2.5V RL = 10k -3 -4 8 1k VS = ±1.2V 20 15 -5 V OUT = 50mVp-p AV = 1 -6 CL = 3pF -7 RF=0/RG = INF VS = ±2.5V 25 10 5 AV = 100 RL = 10kΩ CL = 3pF RF = 100kΩ RG = 1kΩ VS = ±1.0V 0 10k 100k FREQUENCY (Hz) 1M FIGURE 11. AMPLIFIER “B” (OP-AMP) FREQUENCY RESPONSE vs SUPPLY VOLTAGE 6 5M 100 1k 10k 100k 1M FREQUENCY (Hz) FIGURE 12. AMPLIFIER “B” (OP-AMP) FREQUENCY RESPONSE vs SUPPLY VOLTAGE FN6345.0 December 13, 2006 ISL28274, ISL28474 Typical Performance Curves (Continued) 100 VCM = VDD/2 60 40 20 VDD = 5V 0 -20 -40 VDD = 2.5V -60 -80 -100 VOS, µV -40 -60 -80 -100 0 1 2 3 OUTPUT VOLTAGE (V) 4 0 5 100 80 40 80 40 0 -40 -40 -80 -80 100 10k 1k 100k 1M 150 50 40 0 20 GAIN -50 -100 100 10k 1k 100k -150 1M FREQUENCY (Hz) FIGURE 16. AMPLIFIER “B” (OP-AMP) AVOL vs FREQUENCY @ 1kΩ LOAD 10 VS = 5VDC VSOURCE = 1Vp-p RL = 10kΩ AV = +1 0 -20 CMRR (dB) PSRR - -40 -50 -60 PSRR + -30 -40 -50 -60 -70 -70 -80 -80 -90 -90 -100 -100 10 100 VS = ±2.5VDC VSOURCE = 1Vp-p RL = 10kΩ -10 -30 PSRR (dB) 100 60 -20 10 -120 10M 10 -20 5 200 FREQUENCY (Hz) -10 4 0 FIGURE 15. AMPLIFIER “B” (OP-AMP) AVOL vs FREQUENCY @ 100kΩ LOAD 0 3 PHASE GAIN (dB) 0 PHASE (°) 80 10 2 FIGURE 14. AMPLIFIER “B” (OP-AMP) INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 120 1 1 COMMON-MODE INPUT VOLTAGE (V) FIGURE 13. AMPLIFIER “B” (OP-AMP) INPUT OFFSET VOLTAGE vs OUTPUT VOLTAGE GAIN (dB) -20 PHASE (°) INPUT OFFSET VOLTAGE (µV) INPUT OFFSET VOLTAGE (µV) 0 80 1k 10k 100k 1M TEMPERATURE (°C) FIGURE 17. AMPLIFIER “B” (OP-AMP) PSRR vs FREQUENCY 7 10 100 1k 10k 100k 1M TEMPERATURE (°C) FIGURE 18. AMPLIFIER “B” (OP-AMP) CMRR vs FREQUENCY FN6345.0 December 13, 2006 ISL28274, ISL28474 Typical Performance Curves (Continued) 2.56 5.0 VS = 5VDC VOUT = 2Vp-p RL = 1kΩ AV = -2 VIN 2.54 4.0 3.0 VOUT 2.50 VOLTS (V) VOLTS (V) 2.52 2.48 VS = 5VDC VOUT = 0.1Vp-p 2.46 VOUT 2.0 VIN 1.0 RL = 1kΩ 2.44 0 AV = +1 2.42 0 2 4 6 8 10 12 TIME (µs) 14 16 18 20 FIGURE 19. AMPLIFIER “B” (OP-AMP) SMALL SIGNAL TRANSIENT RESPONSE 0 100 150 TIME (µs) 200 250 FIGURE 20. AMPLIFIER “B” (OP-AMP) LARGE SIGNAL TRANSIENT RESPONSE 1k VOLTAGE NOISE (nV/√Hz) 10.00 CURRENT NOISE (pA/√Hz) 50 1.00 0.10 100 10 1 0.01 1 10 100 1k 10k 1 100k 10 100 FREQUENCY (Hz) FIGURE 21. AMPLIFIER “B” (OP-AMP) CURRENT NOISE vs FREQUENCY 10k 1k 100k FREQUENCY (Hz) FIGURE 22. AMPLIFIER “B” (OP-AMP) VOLTAGE NOISE vs FREQUENCY 6 V+ = 5V VIN VOLTS (V) VOLTAGE NOISE (1µV/DIV) 5 4 100K VS + 3 100K 2 Function Generator 33140A DUT + VOUT 1K VS - 1 5.4µVP-P 0 0 TIME (1s/DIV) FIGURE 23. AMPLIFIER “B” (OP-AMP) 0.1Hz TO 10Hz INPUT VOLTAGE NOISE 8 50 100 TIME (ms) 150 200 FIGURE 24. AMPLIFIER “B” (OP-AMP) INPUT VOLTAGE SWING ABOVE THE V+ SUPPLY FN6345.0 December 13, 2006 ISL28274, ISL28474 Typical Performance Curves (Continued) 155 1V/DIV SUPPLY CURRENT (µA) AV = -1 VIN = 200mVp-p V+ = 5V V- = 0V EN INPUT 135 115 95 0 VOUT 0.1V/DIV 75 55 35 2 2.5 3 3.5 4 4.5 5 5.5 0 10µs/DIV SUPPLY VOLTAGE (V) FIGURE 25. SUPPLY CURRENT vs SUPPLY VOLTAGE 170 FIGURE 26. AMPLIFIER “B” (OP-AMP) ENABLE TO OUTPUT DELAY TIME 5.0 n = 100 MAX 160 4.8 MAX 4.6 140 CURRENT (µA) 150 CURRENT (µA) n = 100 MEDIAN 130 120 110 100 4.4 4.2 4.0 3.8 3.6 90 3.2 80 -40 3.0 -40 -20 0 20 40 60 80 MEDIAN 3.4 MIN 100 120 MIN -20 0 TEMPERATURE (°C) FIGURE 27. TOTAL SUPPLY CURRENT vs TEMPERATURE VS = ±2.5V ENABLED. RL = INF 80 100 MIN MAX 120 IA FB+ IBIAS (pA) MEDIAN -5.0 -5.5 -6.0 MIN 0 20 n = 100 0 -4.5 CURRENT (µA) 60 50 n = 100 -20 40 FIGURE 28. DISABLED POSITIVE SUPPLY CURRENT vs TEMPERATURE VS = ±2.5V. RL = INF -4.0 -6.5 -40 20 TEMPERATURE (°C) -50 -100 -150 MEDIAN -200 -250 40 60 80 100 120 TEMPERATURE (°C) FIGURE 29. DISABLED NEGATIVE SUPPLY CURRENT vs TEMPERATURE VS = ±2.5V. RL = INF 9 -300 -40 MAX -20 0 20 40 60 80 100 120 TEMPERATURE (°C) FIGURE 30. I BIAS (IA FB+) vs TEMPERATURE VS = ±2.5V. FN6345.0 December 13, 2006 ISL28274, ISL28474 Typical Performance Curves (Continued) 25 40 MIN 20 n = 100 n = 100 -25 IA FB+ IBIAS (pA) IA FB- IBIAS (pA) 0 -20 -40 -60 -80 MEDIAN -100 -120 -160 -40 -20 0 20 40 60 80 -125 -175 MEDIAN -225 MAX -140 MIN -75 100 -275 -40 120 MAX -20 0 TEMPERATURE (°C) 20 40 60 80 100 TEMPERATURE (°C) FIGURE 31. I BIAS (IA FB-) vs TEMPERATURE VS = ±2.5V. FIGURE 32. I BIAS (IA FB+) vs TEMPERATURE VS = ±1.2V 50 50 n = 100 IA IN+ IBIAS (pA) IA FB- IBIAS (pA) n = 100 0 0 MIN -50 -100 MEDIAN -150 MAX -200 -250 -40 -50 MEDIAN MIN -100 -150 -200 -250 MAX -300 -20 0 20 40 60 80 100 -350 -40 120 -20 0 20 40 60 80 100 FIGURE 33. I BIAS (IA FB-) vs TEMPERATURE VS = ±1.2V FIGURE 34. I BIAS (IA IN+) vs TEMPERATURE VS = ±2.5V 50 50 n = 100 n = 100 0 0 -50 IA IN+ IBIAS (pA) IA IN- IBIAS (pA) 120 TEMPERATURE (°C) TEMPERATURE (°C) MIN -100 -150 MEDIAN -200 MAX -250 -300 -40 120 -20 0 20 40 60 80 100 MIN -100 -150 MEDIAN -200 MAX -250 120 TEMPERATURE (°C) FIGURE 35. I BIAS (IA IN-) vs TEMPERATURE VS = ±2.5V 10 -50 -300 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) FIGURE 36. I BIAS (IA IN+) vs TEMPERATURE VS = ±1.2V FN6345.0 December 13, 2006 ISL28274, ISL28474 Typical Performance Curves (Continued) 50 50 n = 100 n = 100 0 IN+ IBIAS (pA) IA IN- IBIAS (pA) -50 MIN -100 MEDIAN -150 -250 -40 -20 0 20 40 60 80 -50 MIN -100 MEDIAN -150 MAX -200 MAX -200 100 -250 -40 120 -20 0 TEMPERATURE (°C) n = 100 10 120 n = 100 -10 -10 -30 -50 IN+ IBIAS (pA) IN- IBIAS (pA) 100 40 30 MIN -70 -90 MEDIAN -110 MAX -20 0 20 40 60 80 -60 MIN -110 -160 MEDIAN -210 MAX -260 -130 -150 -40 20 40 60 80 TEMPERATURE (°C) FIGURE 38. I BIAS(IN+) vs TEMPERATURE VS = ±2.5V FIGURE 37. I BIAS (IA IN-) vs TEMPERATURE VS = ±1.2V 100 -310 -40 120 -20 0 TEMPERATURE (°C) 20 40 60 80 100 120 TEMPERATURE (°C) FIGURE 40. I BIAS(IN+) vs TEMPERATURE VS = ±1.2V FIGURE 39. I BIAS(IN-) vs TEMPERATURE VS = ±2.5V 40 40.0 MAX n = 100 0.0 -110 IA IOS (pA) MIN -60 MEDIAN MAX -160 n = 100 20.0 -10 IN- IBIAS (pA) OU 0 MIN -20.0 -40.0 MEDIAN -60.0 -80.0 -210 -100.0 -260 -310 -40 -120.0 -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 41. I BIAS(IN-) vs TEMPERATURE VS = ±1.2V 11 -140.0 -40 -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 42. IA INPUT OFFSET CURRENT vs TEMPERATURE VS = ±2.5V FN6345.0 December 13, 2006 ISL28274, ISL28474 Typical Performance Curves (Continued) 100 50 n = 100 n = 100 40 20 0 10 IOS (pA) IA IOS (pA) 30 MAX 0 -10 -50 MEDIAN -100 -20 -30 MEDIAN -150 MIN MIN -40 -50 -40 MAX 50 -20 0 20 40 60 80 100 -200 -40 120 -20 0 TEMPERATURE (°C) FIGURE 43. IA INPUT OFFSET CURRENT vs TEMPERATURE VS = ±1.2V 800 n = 100 20 600 0 400 IA VOS (µV) IOS (pA) -20 -40 -60 -80 -100 0 20 40 60 80 n = 100 MIN 200 0 -200 MEDIAN -600 MIN -20 100 -800 -40 120 MAX -20 0 TEMPERATURE (°C) FIGURE 45. INPUT OFFSET CURRENT vs TEMPERATURE VS = ±1.2V 800 500 400 MIN VOS (µV) IA VOS (µV) 120 MIN 200 200 0 MEDIAN 100 0 -100 -200 -400 MEDIAN -300 -600 -800 -40 100 n = 100 300 400 -200 20 40 60 80 TEMPERATURE (°C) FIGURE 46. IA INPUT OFFSET VOLTAGE vs TEMPERATURE VS = ±2.5V n = 100 600 120 -400 MEDIAN -120 -1400 -40 100 FIGURE 44. INPUT OFFSET CURRENT vs TEMPERATURE VS = ±2.5V 40 MAX 20 40 60 80 TEMPERATURE (°C) -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 47. IA INPUT OFFSET VOLTAGE vs TEMPERATURE VS = ±1.2V 12 MAX -400 MAX -500 -40 -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 48. INPUT OFFSET VOLTAGE vs TEMPERATURE VS = ±2.5V FN6345.0 December 13, 2006 ISL28274, ISL28474 Typical Performance Curves (Continued) 500 145 n = 100 400 n = 100 135 MIN 300 IA CMRR (dB) VOS (µV) MIN 125 200 100 0 -100 MEDIAN -200 115 MEDIAN 105 95 -300 85 MAX -400 -500 -40 -20 0 20 40 60 80 TEMPERATURE (°C) 100 75 -40 120 0 20 120 n = 100 135 IA PSRR (dB) CMRR (dB) 100 145 MIN 120 MEDIAN 100 80 -40 80 155 n = 100 MIN 125 115 MEDIAN 105 95 MAX 90 60 FIGURE 50. IA CMRR vs TEMPERATURE VCM = +2.5V TO -2.5V 140 110 40 TEMPERATURE (°C) FIGURE 49. INPUT OFFSET VOLTAGE vs TEMPERATURE VS = ±1.2V 130 MAX -20 MAX 85 -20 0 20 40 60 80 100 75 -40 120 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) TEMPERATURE (°C) FIGURE 51. CMRR vs TEMPERATURE VCM = +2.5V TO -2.5V FIGURE 52. IA PSRR vs TEMPERATURE VS = ±2.5V 4.910 155 n = 100 n = 100 4.900 145 MIN MIN IA VOUT (V) PSRR (dB) 135 4.890 125 115 MEDIAN 105 95 4.870 MEDIAN 4.860 MAX MAX 4.850 85 75 -40 4.880 -20 0 20 40 60 80 TEMPERATURE (°C) 100 FIGURE 53. PSRR vs TEMPERATURE VS = ±2.5V 13 120 4.840 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) FIGURE 54. IA VOUT HIGH vs TEMPERATURE RL = 1k. VS = ±2.5V FN6345.0 December 13, 2006 ISL28274, ISL28474 Typical Performance Curves (Continued) 4.9980 170 n = 100 4.9975 MIN 150 4.9970 IA VOUT (mV) IA VOUT (V) n = 100 160 4.9965 MEDIAN 4.9960 130 MEDIAN 120 110 MAX 4.9955 MIN 140 MAX 100 4.9950 -40 -20 0 20 40 60 80 TEMPERATURE (°C) 100 90 -40 120 FIGURE 55. IA VOUT HIGH vs TEMPERATURE RL = 100k. VS = ±2.5V -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 56. IA VOUT LOW vs TEMPERATURE RL = 1k. VS = ±2.5V 6.5 4.910 n = 100 n = 100 6.0 4.900 5.5 4.890 MIN 5.0 VOUT (V) IA VOUT (mV) MIN MEDIAN 4.5 4.870 MAX 4.0 3.5 -40 4.880 -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 4.850 -40 0 20 40 60 80 100 120 FIGURE 58. VOUT HIGH vs TEMPERATURE RL = 1k. VS = ±2.5V 170 n = 100 n = 100 4.9984 4.9982 160 MIN VOUT (mV) 4.9978 4.9976 MEDIAN 4.9972 140 130 MEDIAN 120 MAX 110 MAX 4.9970 MIN 150 4.9980 VOUT (V) -20 TEMPERATURE (°C) 4.9986 100 4.9968 4.9966 -40 MAX 4.860 FIGURE 57. IA VOUT LOW vs TEMPERATURE RL = 100k. VS = ±2.5V 4.9974 MEDIAN -20 0 20 40 60 80 TEMPERATURE (°C) 100 FIGURE 59. VOUT HIGH vs TEMPERATURE RL = 100k. VS = ±2.5V 14 120 90 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) FIGURE 60. VOUT LOW vs TEMPERATURE RL = 1k. VS = ±2.5V FN6345.0 December 13, 2006 ISL28274, ISL28474 Typical Performance Curves (Continued) 4.4 n = 100 4.2 MIN VOUT (mV) 4.0 3.8 3.6 MEDIAN 3.4 MAX 3.2 3.0 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) FIGURE 61. VOUT LOW vs TEMPERATURE RL = 100k. VS = ±2.5V Pin Descriptions ISL28274 ISL28474 (16 LD QSOP) (24 LD QSOP) 1, 9, 13, 14 PIN NAME EQUIVALENT CIRCUIT NC DESCRIPTION No internal connection 11, 14 2 IA OUT IA OUT_1/2 Circuit 3 Instrumentation Amplifier output 1, 24 IA FB+ IA FB+_1/2 Circuit 1 Instrumentation Amplifier Feedback from non-inverting output 2, 23 IA FBIA FB-_1/2 Circuit 1 Instrumentation Amplifier Feedback from inverting output 3, 22 IA INIA IN-_1/2 Circuit 1 Instrumentation Amplifier inverting input 4, 21 IA IN+ IA IN+_1/2 Circuit 1 Instrumentation Amplifier non-inverting input 5, 20 IA EN IA EN_1/2 Circuit 2 6, 19 Instrumentation Amplifier enable pin internal pull-down; Logic “1” selects the disabled state; Logic “0” selects the enabled state. 18 V- Circuit 4 Negative power supply Circuit 2 8, 17 EN EN 1/2 Amplifier enable pin with internal pull-down; Logic “1” selects the disabled state; Logic “0” selects the enabled state. IN+ IN+ 1/2 Circuit 1 Amplifier non-inverting input 9, 16 ININ- 1/2 Circuit 1 Amplifier inverting input 10, 15 OUT OUT 1/2 Circuit 3 Amplifier output 12, 13 7 V+ Circuit 4 Positive power supply 3 4 5 6 7 8 10 11 12 15 16 IA = Instrumentation Amplifier V+ V+ IN- IN+ V+ LOGIC PIN V- VCIRCUIT 2 15 CAPACITIVELY COUPLED ESD CLAMP OUT V- CIRCUIT 1 V+ VCIRCUIT 3 CIRCUIT 4 FN6345.0 December 13, 2006 ISL28274, ISL28474 Description of Operation and Application Information Product Description The ISL28274 and ISL28474 provide both a micropower instrumentation amplifier (Amp A) and a low power precision amplifier (Amp B) in the same package. The amplifiers deliver rail-to-rail input amplification and rail-to-rail output swing on a single 2.4V to 5V supply. They also deliver excellent DC and AC specifications while consuming only 60µA typical supply current per amplifier. Because the instrumentation amplifiers provide an independent pair of feedback terminals to set the gain and to adjust the output level, the in-amp achieve high common-mode rejection ratio regardless of the tolerance of the gain setting resistors. The instrumentation amplifier is internally compensated for a minimum closed loop gain of 100 or greater. An EN pin is used to reduce power consumption, typically 4µA for the ISL28274 and 8µA for the ISL28474, while both amplifiers are disabled. The user has independent control of each amplifier via separate EN pins. Input Protection The input and feedback terminals have internal ESD protection diodes to both positive and negative supply rails, limiting the input voltage to within one diode drop beyond the supply rails. If overdriving the inputs is necessary, the external input current must never exceed 5mA. External series resistor may be used as a protection to limit excessive external voltage and current from damaging the inputs. Input Stage and Input Voltage Range The input terminals (IN+ and IN-) of both amplifiers “A” and amp “B” are single differential pair P-MOSFET devices aided by an Input Range Enhancement Circuit to increase the headroom of operation of the common-mode input voltage. The feedback terminals (FB+ and FB-) of amplifier “A” also have a similar topology. As a result, the input common-mode voltage range is rail-to-rail. These amps are able to handle input voltages that are at or slightly beyond the supply and ground making them well suited for single 5V or 3.3V low voltage supply systems. There is no need then to move the common-mode input to achieve symmetrical input voltage. Output Stage and Output Voltage Range A pair of complementary MOSFET devices drives the output VOUT to within a few mV of the supply rails. At a 100kΩ load, the PMOS sources current and pulls the output up to 4mV below the positive supply, while the NMOS sinks current and pulls the output down to 3mV above the negative supply, or ground in the case of a single supply operation. The current sinking and sourcing capability of the ISL28274 are internally limited to 31mA. Gain Setting of Instrumentation amp “A” of the ISL28274 in-amp is to maintain the differential voltage across FB+ and FB- equal to IN+ and IN-; (FB+ - FB-) = (IN+ - IN-). Consequently, the transfer function can be derived. The gain is set by two external resistors, the feedback resistor RF, and the gain resistor RG. 2.4V to 5V 16 VIN/2 6 IN+ 5 IN- 7 VS+ + 3 FB+ 4 FB- Amp “A” EN - VIN/2 VCM EN_BAR 2 ISL28274 VOUT + - VS8 RG RF FIGURE 62. GAIN IS BY EXTERNAL RESISTORS RF AND RG RF ⎞ ⎛ VOUT = ⎜ 1 + --------⎟ VIN R ⎝ G⎠ In Figure 62, the FB+ pin and one end of resistor RG are connected to GND. With this configuration, the above gain equation is only true for a positive swing in VIN; negative input swings will be ignored and the output will be at ground. Reference Connection Unlike a three-opamp instrumentation amplifier, a finite series resistance seen at the REF terminal does not degrade the high CMRR performance eliminating the need for an additional external buffer amplifier. Figure 63 uses the FB+ pin to provide a high impedance REF terminal. 2.4V to 5V 16 VIN/2 6 IN+ 5 INVIN/2 3 FB+ VCM 4 FB- 2.9V to 5V EN_BAR 7 VS+ + ISL28274 EN Amp “A” 2 VOUT + - VS8 R1 REF R2 RG RF FIGURE 63. GAIN SETTING AND REFERENCE CONNECTION RF ⎞ RF ⎞ ⎛ ⎛ VOUT = ⎜ 1 + --------⎟ ( VIN ) + ⎜ 1 + --------⎟ ( VREF ) R R ⎝ ⎝ G⎠ G⎠ VIN, the potential difference across IN+ and IN-, is replicated (less the input offset voltage) across FB+ and FB-. The goal 16 FN6345.0 December 13, 2006 ISL28274, ISL28474 The FB+ pin is used as a REF terminal to center or to adjust the output. Because the FB+ pin is a high impedance input, an economical resistor divider can be used to set the voltage at the REF terminal without degrading or affecting the CMRR performance. Any voltage applied to the REF terminal will shift VOUT by VREF times the closed loop gain, which is set by resistors RF and RG as shown in Figure 63. The FB+ pin can also be connected to the other end of resistor, RG. See Figure 64. Keeping the basic concept that the in-amps maintain constant differential voltage across the input terminals and feedback terminals (IN+ - IN- = FB+ - FB-), the transfer function of Figure 64 can be derived. 2.4V to 5V 16 VIN/2 6 IN+ 5 INVIN/2 3 FB+ VCM 4 FB- Using Only the Instrumentation Amplifier If the application only requires the instrumentation amp, the user must configure the unused Opamp to prevent it from oscillating. The unused Opamp will oscillate if the input and output pins are floating. This will result in higher than expected supply currents and possible noise injection into the in-amp. The proper way to prevent this oscillation is to short the output to the negative input and ground the positive input (as shown in Figure 65). - EN_BAR + 7 VS+ + ISL28274 EN Amp “A” 2 VOUT FIGURE 65. PREVENTING OSCILLATIONS IN UNUSED CHANNELS + Proper Layout Maximizes Performance - VS8 RG amplifiers will power down when EN bar is pulled above 2V, and will power on when EN bar is pulled below 0.8V. RF VREF FIGURE 64. REFERENCE CONNECTION WITH AN AVAILABLE VREF RF ⎞ ⎛ VOUT = ⎜ 1 + --------⎟ ( VIN ) + ( VREF ) R ⎝ G⎠ A finite resistance Rs in series with the VREF source, adds an output offset of VIN*(RS/RG). As the series resistance Rs approaches zero, the gain equation is simplified to the above equation for Figure 64. VOUT is simply shifted by an amount VREF. External Resistor Mismatches Because of the independent pair of feedback terminals provided by the ISL28274, the CMRR is not degraded by any resistor mismatches. Hence, unlike a three opamp and especially a two opamp in-amp, the ISL28274 reduce the cost of external components by allowing the use of 1% or more tolerance resistors without sacrificing CMRR performance. The ISL28274 CMRR will be 100dB regardless of the tolerance of the resistors used. To achieve the maximum performance of the high input impedance and low offset voltage, care should be taken in the circuit board layout. The PC board surface must remain clean and free of moisture to avoid leakage currents between adjacent traces. Surface coating of the circuit board will reduce surface moisture and provide a humidity barrier, reducing parasitic resistance on the board. When input leakage current is a concern, the use of guard rings around the amplifier inputs will further reduce leakage currents. Figure 66 shows a guard ring example for a unity gain amplifier that uses the low impedance amplifier output at the same voltage as the high impedance input to eliminate surface leakage. The guard ring does not need to be a specific width, but it should form a continuous loop around both inputs. For further reduction of leakage currents, components can be mounted to the PC board using Teflon standoff insulators. HIGH IMPEDANCE INPUT IN V+ 1/2 ISL28274 1/4 ISL28474 FIGURE 66. GUARD RING EXAMPLE FOR UNITY GAIN AMPLIFIER Disable/Power-Down The ISL28274 Amplifiers “A” and “B” can be powered down reducing the supply current to typically 4µA. When disabled, the output is in a high impedance state. The active low EN bar pin has an internal pull down and hence can be left floating and the in-amp and Opamp enabled by default. When the EN bar is connected to an external logic, the 17 Current Limiting The ISL28274 has no internal current-limiting circuitry. If the output is shorted, it is possible to exceed the Absolute Maximum Rating for output current or power dissipation, potentially resulting in the destruction of the device. FN6345.0 December 13, 2006 ISL28274, ISL28474 Power Dissipation It is possible to exceed the +150°C maximum junction temperatures under certain load and power-supply conditions. It is therefore important to calculate the maximum junction temperature (TJMAX) for all applications to determine if power supply voltages, load conditions, or package type need to be modified to remain in the safe operating area. These parameters are related in Equation 1: T JMAX = T MAX + ( θ JA xPD MAXTOTAL ) (EQ. 1) where: • PDMAXTOTAL is the sum of the maximum power dissipation of each amplifier in the package (PDMAX) • PDMAX for each amplifier can be calculated as shown in Equation 2: V OUTMAX PD MAX = 2*V S × I SMAX + ( V S - V OUTMAX ) × ---------------------------RL (EQ. 2) where: • TMAX = Maximum ambient temperature • θJA = Thermal resistance of the package • PDMAX = Maximum power dissipation of 1 amplifier • VS = Supply voltage • IMAX = Maximum supply current of 1 amplifier • VOUTMAX = Maximum output voltage swing of the application • RL = Load resistance 18 FN6345.0 December 13, 2006 ISL28274, ISL28474 Quarter Size Outline Plastic Packages Family (QSOP) MDP0040 A QUARTER SIZE OUTLINE PLASTIC PACKAGES FAMILY D (N/2)+1 N E SYMBOL QSOP16 QSOP24 QSOP28 TOLERANCE NOTES PIN #1 I.D. MARK E1 1 (N/2) A 0.068 0.068 0.068 Max. - A1 0.006 0.006 0.006 ±0.002 - A2 0.056 0.056 0.056 ±0.004 - b 0.010 0.010 0.010 ±0.002 - c 0.008 0.008 0.008 ±0.001 - D 0.193 0.341 0.390 ±0.004 1, 3 E 0.236 0.236 0.236 ±0.008 - E1 0.154 0.154 0.154 ±0.004 2, 3 e 0.025 0.025 0.025 Basic - L 0.025 0.025 0.025 ±0.009 - L1 0.041 0.041 0.041 Basic - N 16 24 28 Reference - B 0.010 C A B e H C SEATING PLANE 0.007 0.004 C b C A B Rev. E 3/01 NOTES: 1. Plastic or metal protrusions of 0.006” maximum per side are not included. L1 A 2. Plastic interlead protrusions of 0.010” maximum per side are not included. 3. Dimensions “D” and “E1” are measured at Datum Plane “H”. c 4. Dimensioning and tolerancing per ASME Y14.5M-1994. SEE DETAIL "X" 0.010 A2 GAUGE PLANE L A1 4°±4° DETAIL X All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com 19 FN6345.0 December 13, 2006