IRF620S, SiHF620S Datasheet

IRF620S, SiHF620S
Vishay Siliconix
Power MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
• Halogen-free According to IEC 61249-2-21
Definition
• Surface Mount
• Available in Tape and Reel
• Dynamic dV/dt Rating
• Repetitive Avalanche Rated
• Fast Switching
• Simple Drive Requirements
• Ease of Paralleling
• Compliant to RoHS Directive 2002/95/EC
200
RDS(on) ()
VGS = 10 V
0.80
Qg (Max.) (nC)
14
Qgs (nC)
3.0
Qgd (nC)
7.9
Configuration
Single
D
D2PAK
DESCRIPTION
(TO-263)
Third generation Power MOSFETs from Vishay provide the
designer with the best combination of fast switching,
ruggedized device design, low on-resistance and
cost-effectiveness.
The D2PAK (TO-263) is a surface mount power package
capable of accommodating die size up to HEX-4. It provides
the highest power capability and the lowest possible
on-resistance in any existing surface mount package. The
D2PAK (TO-263) is suitable for high current applications
because of its low internal connection resistance and can
dissipate up to 2.0 W in a typical surface mount application.
G
G D
S
S
N-Channel MOSFET
ORDERING INFORMATION
Package
Lead (Pb)-free and Halogen-free
Lead (Pb)-free
D2PAK (TO-263)
SiHF620S-GE3
IRF620SPbF
SiHF620S-E3
D2PAK (TO-263)
SiHF620STRL-GE3a
IRF620STRLPbFa
SiHF620STL-E3a
D2PAK (TO-263)
SiHF620STRR-GE3a
IRF620STRRPbFa
SiHF620STR-E3a
Note
a. See device orientation.
ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted)
PARAMETER
Drain-Source Voltage
Gate-Source Voltage
Continuous Drain Current
Pulsed Drain Currenta
Linear Derating Factor
Linear Derating Factor (PCB Mount)e
Single Pulse Avalanche Energyb
Avalanche Currenta
Repetitive Avalanche Energya
Maximum Power Dissipation
Maximum Power Dissipation (PCB Mount)e
Peak Diode Recovery dV/dtc
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature)
SYMBOL
VDS
VGS
VGS at 10 V
TC = 25 °C
TC = 100 °C
ID
IDM
EAS
IAR
EAR
TC = 25 °C
TA = 25 °C
PD
dV/dt
TJ, Tstg
for 10 s
LIMIT
200
± 20
5.2
3.3
18
0.40
0.025
110
5.2
5.0
50
3.0
5.0
- 55 to + 150
300d
UNIT
V
A
W/°C
mJ
A
mJ
W
V/ns
°C
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. VDD = 50 V, starting TJ = 25 °C, L = 6.1 mH, Rg = 25 , IAS = 5.2 A (see fig. 12).
c. ISD  5.2 A, dI/dt  95 A/μs, VDD  VDS, TJ  150 °C.
d. 1.6 mm from case.
e. When mounted on 1" square PCB (FR-4 or G-10 material).
* Pb containing terminations are not RoHS compliant, exemptions may apply
Document Number: 91028
S11-1046-Rev. D, 30-May-11
www.vishay.com
1
This document is subject to change without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRF620S, SiHF620S
Vishay Siliconix
THERMAL RESISTANCE RATINGS
SYMBOL
TYP.
MAX.
Maximum Junction-to-Ambient
PARAMETER
RthJA
-
62
Maximum Junction-to-Ambient
(PCB Mount)a
RthJA
-
40
Maximum Junction-to-Case (Drain)
RthJC
-
2.5
UNIT
°C/W
Note
a. When mounted on 1" square PCB (FR-4 or G-10 material).
SPECIFICATIONS (TJ = 25 °C, unless otherwise noted)
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
Gate-Source Threshold Voltage
VDS
VGS = 0, ID = 250 μA
200
-
-
V
VDS/TJ
Reference to 25 °C, ID = 1 mA
-
0.29
-
V/°C
VGS(th)
VDS = VGS, ID = 250 μA
2.0
-
4.0
V
Gate-Source Leakage
IGSS
VGS = ± 20 V
-
-
± 100
nA
Zero Gate Voltage Drain Current
IDSS
VDS = 200 V, VGS = 0 V
-
-
25
VDS = 160 V, VGS = 0 V, TJ = 125 °C
-
-
250
Drain-Source On-State Resistance
Forward Transconductance
RDS(on)
gfs
ID = 3.1 Ab
VGS = 10 V
VDS = 50 V, ID = 3.1 Ab
μA
-
-
0.80

1.5
-
-
S
-
260
-
-
100
-
-
30
-
-
-
14
Dynamic
Input Capacitance
Ciss
Output Capacitance
Coss
VGS = 0 V,
VDS = 25 V,
f = 1.0 MHz, see fig. 5
Reverse Transfer Capacitance
Crss
Total Gate Charge
Qg
Gate-Source Charge
Qgs
-
-
3.0
Gate-Drain Charge
Qgd
-
-
7.9
Turn-On Delay Time
td(on)
-
7.2
-
tr
-
22
-
-
19
-
-
13
-
-
4.5
-
-
7.5
-
-
-
5.2
-
-
18
Rise Time
Turn-Off Delay Time
Fall Time
td(off)
VGS = 10 V
ID = 4.8 A, VDS = 160 V,
see fig. 6 and 13b
VDD = 100 V, ID = 4.8 A,
Rg = 18 , RD = 20 , see fig. 10b
tf
pF
nC
ns
Dynamic
Internal Drain Inductance
LD
Internal Source Inductance
LS
Between lead,
6 mm (0.25") from
package and center of
die contact
D
nH
G
S
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
IS
Pulsed Diode Forward Currenta
ISM
Body Diode Voltage
VSD
Body Diode Reverse Recovery Time
trr
Body Diode Reverse Recovery Charge
Qrr
Forward Turn-On Time
ton
MOSFET symbol
showing the
integral reverse
p - n junction diode
D
A
G
S
TJ = 25 °C, IS = 5.2 A, VGS = 0 Vb
TJ = 25 °C, IF = 4.8 A, dI/dt = 100 A/μsb
-
-
1.8
V
-
150
300
ns
-
0.91
1.8
μC
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width  300 μs; duty cycle  2 %.
www.vishay.com
2
Document Number: 91028
S11-1046-Rev. D, 30-May-11
This document is subject to change without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRF620S, SiHF620S
Vishay Siliconix
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)
VGS
15 V
10 V
8.0 V
7.0 V
6.0 V
5.5 V
5.0 V
Bottom 4.5 V
101
100
4.5 V
10-1
ID, Drain Current (A)
ID, Drain Current (A)
101 Top
150 °C
100
25 °C
10-1
10-2
10-2
20 µs Pulse Width
TC = 25 °C
10-1
100
101
4
VDS, Drain-to-Source Voltage (V)
91028_01
20 µs Pulse Width
VDS = 50 V
4.5 V
10-1
10-2
91028_02
20 µs Pulse Width
TC = 150 °C
10-1
100
101
VDS, Drain-to-Source Voltage (V)
Fig. 2 - Typical Output Characteristics, TC = 150 °C
Document Number: 91028
S11-1046-Rev. D, 30-May-11
7
8
9
10
Fig. 3 - Typical Transfer Characteristics
RDS(on), Drain-to-Source On Resistance
(Normalized)
ID, Drain Current (A)
100
VGS
15 V
10 V
8.0 V
7.0 V
6.0 V
5.5 V
5.0 V
Bottom 4.5 V
Top
6
VGS, Gate-to-Source Voltage (V)
91028_03
Fig. 1 - Typical Output Characteristics, TC = 25 °C
101
5
3.0
2.5
ID = 4.8 A
VGS = 10 V
2.0
1.5
1.0
0.5
0.0
- 60 - 40 - 20 0
91028_04
20 40 60 80 100 120 140 160
TJ, Junction Temperature (°C)
Fig. 4 - Normalized On-Resistance vs. Temperature
www.vishay.com
3
This document is subject to change without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRF620S, SiHF620S
750
VGS = 0 V, f = 1 MHz
Ciss = Cgs + Cgd, Cds Shorted
Crss = Cgd
Coss = Cds + Cgd
Capacitance (pF)
600
450
Ciss
300
Coss
150
Crss
ISD, Reverse Drain Current (A)
Vishay Siliconix
101
150 °C
25 °C
100
VGS = 0 V
0
100
101
0.5
VDS, Drain-to-Source Voltage (V)
91028_05
91028_07
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
102
ID = 4.8 A
VDS = 100 V
VDS = 40 V
12
8
2
10 µs
10
100 µs
5
1 ms
2
1
10 ms
5
4
For test circuit
see figure 13
0
0
91028_06
3
6
9
12
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
www.vishay.com
4
TC = 25 °C
TJ = 150 °C
Single Pulse
2
0.1
0.1
15
QG, Total Gate Charge (nC)
1.5
1.3
Operation in this area limited
by RDS(on)
5
VDS = 160 V
16
1.0
Fig. 7 - Typical Source-Drain Diode Forward Voltage
ID, Drain Current (A)
VGS, Gate-to-Source Voltage (V)
20
0.8
VSD, Source-to-Drain Voltage (V)
91028_08
2
5
1
2
5
10
2
5
102
2
5
103
VDS, Drain-to-Source Voltage (V)
Fig. 8 - Maximum Safe Operating Area
Document Number: 91028
S11-1046-Rev. D, 30-May-11
This document is subject to change without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRF620S, SiHF620S
Vishay Siliconix
RD
VDS
6.0
VGS
5.0
ID, Drain Current (A)
D.U.T.
Rg
4.0
+
- VDD
10 V
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
3.0
2.0
Fig. 10a - Switching Time Test Circuit
1.0
VDS
90 %
0.0
25
50
75
100
125
150
TC, Case Temperature (°C)
91028_09
10 %
VGS
Fig. 9 - Maximum Drain Current vs. Case Temperature
td(on)
td(off) tf
tr
Fig. 10b - Switching Time Waveforms
Thermal Response (ZthJC)
10
1
0 − 0.5
0.2
PDM
0.1
0.05
0.1
t1
0.02
0.01
Single Pulse
(Thermal Response)
t2
Notes:
1. Duty Factor, D = t1/t2
2. Peak Tj = PDM x ZthJC + TC
10-2
10-5
91028_11
10-4
10-3
10-2
0.1
1
10
t1, Rectangular Pulse Duration (s)
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
Document Number: 91028
S11-1046-Rev. D, 30-May-11
www.vishay.com
5
This document is subject to change without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRF620S, SiHF620S
Vishay Siliconix
L
Vary tp to obtain
required IAS
VDS
VDS
tp
VDD
D.U.T
Rg
+
-
I AS
V DD
VDS
10 V
0.01 Ω
tp
IAS
Fig. 12a - Unclamped Inductive Test Circuit
Fig. 12b - Unclamped Inductive Waveforms
EAS, Single Pulse Energy (mJ)
300
ID
2.3 A
3.3 A
Bottom 5.2 A
Top
250
200
150
100
50
0
VDD = 50 V
25
91028_12c
50
75
100
125
150
Starting TJ, Junction Temperature (°C)
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
Current regulator
Same type as D.U.T.
50 kΩ
QG
10 V
12 V
0.2 µF
0.3 µF
QGS
QGD
+
D.U.T.
VG
-
VDS
VGS
3 mA
Charge
IG
ID
Current sampling resistors
Fig. 13a - Basic Gate Charge Waveform
www.vishay.com
6
Fig. 13b - Gate Charge Test Circuit
Document Number: 91028
S11-1046-Rev. D, 30-May-11
This document is subject to change without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
IRF620S, SiHF620S
Vishay Siliconix
Peak Diode Recovery dV/dt Test Circuit
+
D.U.T.
Circuit layout considerations
• Low stray inductance
• Ground plane
• Low leakage inductance
current transformer
+
-
-
Rg
•
•
•
•
+
dV/dt controlled by Rg
Driver same type as D.U.T.
ISD controlled by duty factor “D”
D.U.T. - device under test
+
-
VDD
Driver gate drive
P.W.
Period
D=
P.W.
Period
VGS = 10 Va
D.U.T. lSD waveform
Reverse
recovery
current
Body diode forward
current
dI/dt
D.U.T. VDS waveform
Diode recovery
dV/dt
Re-applied
voltage
Inductor current
VDD
Body diode forward drop
Ripple ≤ 5 %
ISD
Note
a. VGS = 5 V for logic level devices
Fig. 14 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see www.vishay.com/ppg?91028.
Document Number: 91028
S11-1046-Rev. D, 30-May-11
www.vishay.com
7
This document is subject to change without notice.
THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Material Category Policy
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21
conform to JEDEC JS709A standards.
Revision: 02-Oct-12
1
Document Number: 91000