PD - 97480 IRG7PH42UD1PbF IRG7PH42UD1-EP INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS Features • • • • • • • • • Low VCE (ON) trench IGBT technology Low switching losses Square RBSOA Ultra-low VF Diode 1300Vpk repetitive transient capacity 100% of the parts tested for ILM Positive VCE (ON) temperature co-efficient Tight parameter distribution Lead free package C VCES = 1200V I NOMINAL = 30A G TJ(max) = 150°C E VCE(on) typ. = 1.7V n-channel Benefits • Device optimized for induction heating and soft switching applications • High Efficiency due to Low VCE(on), low switching losses and Ultra-low VF • Rugged transient performance for increased reliability • Excellent current sharing in parallel operation • Low EMI C C GC E TO-247AC IRG7PH42UD1PbF G Gate E GC TO-247AD IRG7PH42UD1-EP C Collector E Emitter Absolute Maximum Ratings Parameter Max. Units V Continuous Collector Current 1200 85 IC @ TC = 100°C Continuous Collector Current 45 INOMINAL Nominal Current ICM Pulse Collector Current, VGE=15V ILM Clamped Inductive Load Current, VGE=20V IF @ TC = 25°C Diode Continous Forward Current IF @ TC = 100°C IFRM Diode Continous Forward Current Diode Repetitive Peak Forward Current VGE Continuous Gate-to-Emitter Voltage ±30 PD @ TC = 25°C Maximum Power Dissipation 313 PD @ TC = 100°C Maximum Power Dissipation 125 TJ Operating Junction and TSTG Storage Temperature Range VCES Collector-to-Emitter Voltage IC @ TC = 25°C g 30 h 90 c A 120 70 35 d 120 V W -55 to +150 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Typ. Max. ––– ––– 0.4 RθJC (Diode) f Thermal Resistance Junction-to-Case-(each Diode) f Min. Thermal Resistance Junction-to-Case-(each IGBT) Parameter ––– ––– 1.05 RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.24 ––– RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– 40 ––– RθJC (IGBT) 1 Units °C/W www.irf.com 3/26/10 IRG7PH42UD1PbF/IRG7PH42UD1-EP Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)CES VCES(Transient) Repetitive Transient Collector-to-Emitter Voltage ΔV(BR)CES/ΔTJ Temperature Coeff. of Breakdown Voltage VCE(on) Collector-to-Emitter Saturation Voltage VGE(th) gfe Gate Threshold Voltage Forward Transconductance ICES Collector-to-Emitter Leakage Current VFM Diode Forward Voltage Drop IGES Gate-to-Emitter Leakage Current Collector-to-Emitter Breakdown Voltage Min. Typ. Max. Units 1200 — — — — 3.0 — — — — — — — — 1.2 1.7 2.0 — 32 1.0 230 1.15 1.10 — — 1300 — 2.0 — 6.0 — 100 — 1.30 — ±100 Conditions e V VGE = 0V, IC = 100μA V VGE = 0V, TJ=75°C, PW ≤ 10μs V/°C VGE = 0V, IC = 2.0mA (25°C-150°C) IC = 30A, VGE = 15V, TJ = 25°C V IC = 30A, VGE = 15V, TJ = 150°C V VCE = VGE, IC = 1.0mA S VCE = 50V, IC = 30A, PW = 80μs VGE = 0V, VCE = 1200V μA VGE = 0V, VCE = 1200V, TJ = 150°C IF = 30A V IF = 30A, TJ = 150°C nA VGE = ±30V e Switching Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Qg Qge Qgc Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Parameter — — — 180 24 70 Max. Units 270 36 110 nC Eoff Turn-Off Switching Loss — 1210 1450 μJ td(off) tf Turn-Off delay time Fall time — — 270 35 290 43 ns Eoff Turn-Off Switching Loss — 1936 — μJ td(off) tf Cies Coes Cres Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance — — — — — 300 160 3390 130 83 — — — — — ns RBSOA Reverse Bias Safe Operating Area FULL SQUARE Conditions IC = 30A VGE = 15V VCC = 600V IC = 30A, VCC = 600V, VGE = 15V RG = 10Ω, L = 200μH,TJ = 25°C Energy losses include tail IC = 30A, VCC = 600V, VGE = 15V RG = 10Ω, L = 200μH,TJ = 25°C IC = 30A, VCC = 600V, VGE = 15V RG = 10Ω, L = 200μH,TJ = 150°C Energy losses include tail pF IC = 30A, VCC = 600V, VGE = 15V RG = 10Ω, L = 200μH, TJ = 150°C VGE = 0V VCC = 30V f = 1.0Mhz TJ = 150°C, IC = 120A VCC = 960V, Vp =1200V Rg = 10Ω, VGE = +20V to 0V Notes: VCC = 80% (VCES), VGE = 20V, L = 22μH, RG = 10Ω. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. Rθ is measured at TJ of approximately 90°C. Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 78A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. Rating for Hard Switching conditions. Rating is higher in Soft Switching conditions. 2 www.irf.com IRG7PH42UD1PbF/IRG7PH42UD1-EP 350 100 LIMITED BY PACKAGE 250 60 Ptot (W) IC, Collector Current (A) 300 80 40 200 150 100 20 50 0 0 25 50 75 100 125 150 25 50 75 Fig. 1 - Maximum DC Collector Current vs. Case Temperature 150 Fig. 2 - Power Dissipation vs. Case Temperature 1.0 1000 IC = 1.0mA 0.9 100 0.8 IC (A) V GE(th), Gate Threshold Voltage (Normalized) 125 TC (°C) TC, Case Temperature (°C) 0.7 10 0.6 0.5 1 25 50 75 100 125 150 10 100 1000 TJ , Temperature (°C) Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE = 20V 120 120 V GE = 18V V GE = 18V 100 V GE = 12V V GE = 12V V GE = 10V 80 V GE = 10V ICE (A) V GE = 8.0V 60 V GE = 15V 100 V GE = 15V 80 V GE = 8.0V 60 40 40 20 20 0 0 0 2 4 6 8 10 V CE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80μs www.irf.com 10000 VCE (V) Fig. 3 - Typical Gate Threshold Voltage (Normalized) vs. Junction Temperature ICE (A) 100 0 2 4 6 8 10 V CE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80μs 3 IRG7PH42UD1PbF/IRG7PH42UD1-EP 140 120 VGE = 18V VGE = 15V 100 80 25°C 150°C 100 VGE = 8.0V IF (A) ICE (A) 120 VGE = 12V VGE = 10V 60 40 80 60 40 20 20 0 0 0 2 4 6 8 0.0 10 0.5 1.0 Fig. 8 - Typ. Diode Forward Voltage Drop Characteristics 20 20 18 18 16 16 14 14 ICE = 15A ICE = 30A VCE (V) VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80μs 10 ICE = 60A 8 12 ICE = 15A ICE = 30A 10 8 ICE = 60A 6 6 4 4 2 2 0 0 5 10 15 5 20 10 15 20 VGE (V) VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 25°C Fig. 9 - Typical VCE vs. VGE TJ = -40°C 20 120 ICE, Collector-to-Emitter Current (A) 18 16 14 VCE (V) 2.0 VF (V) V CE (V) 12 1.5 12 ICE = 15A 10 ICE = 30A 8 ICE = 60A 6 4 100 80 TJ = 25°C TJ = 150°C 60 40 20 2 0 0 5 10 15 V GE (V) Fig. 11 - Typical VCE vs. VGE TJ = 150°C 4 20 2 4 6 8 10 VGE, Gate-to-Emitter Voltage (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10μs www.irf.com IRG7PH42UD1PbF/IRG7PH42UD1-EP 5000 1000 4000 Swiching Time (ns) EOFF Energy (μJ) 3000 2000 tdOFF tF 1000 100 0 0 10 20 30 40 50 60 0 70 I C (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L = 200μH; VCE = 600V, RG = 10Ω; VGE = 15V 10 20 60 70 Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L = 200μH; VCE = 600V, RG = 10Ω; VGE = 15V tdOFF 4500 Swiching Time (ns) Energy (μJ) 50 IC (A) 5500 EOFF 3500 1000 100 tF 2500 10 1500 0 25 50 75 100 0 125 20 40 60 80 100 120 RG (Ω) RG (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L = 200μH; VCE = 600V, ICE = 30A; VGE = 15V Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L = 200μH; VCE = 600V, ICE = 30A; VGE = 15V 10000 16 VGE, Gate-to-Emitter Voltage (V) Cies Capacitance (pF) 40 10000 6500 1000 Coes 100 Cres 10 14 V CES =600V 12 V CES = 400V 10 8 6 4 2 0 0 20 40 60 80 VCE (V) Fig. 17 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz www.irf.com 30 100 0 50 100 150 200 Q G, Total Gate Charge (nC) Fig. 18 - Typical Gate Charge vs. VGE ICE = 30A; L = 680μH 5 IRG7PH42UD1PbF/IRG7PH42UD1-EP 1 Thermal Response ( Z thJC ) D = 0.50 0.1 0.20 0.10 0.05 0.01 0.02 0.01 0.001 τJ R1 R1 τJ τ1 1E-005 R3 R3 τC τ τ2 τ1 τ2 τ3 τ3 τ4 τi (sec) Ri (°C/W) R4 R4 τ4 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 R2 R2 0.1306 0.000313 0.1752 0.002056 0.0814 0.008349 0.0031 0.0431 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.1 0.10 τJ 0.05 0.02 0.01 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 τC τ τ2 τ1 τ2 τ3 τ3 Ci= τi/Ri Ci i/Ri 1E-005 0.0001 τ4 0.01186 0.00001 0.39298 0.000547 0.43450 0.003563 0.22096 0.021596 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 τ4 τi (sec) Ri (°C/W) R4 R4 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 20. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) 6 www.irf.com IRG7PH42UD1PbF/IRG7PH42UD1-EP L L DUT 0 80 V + VCC - 1K DUT VCC Rg Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit C force diode clamp / DUT 100K L D1 -5V 22K C sense DUT / DRIVER VCC DUT G force 0.0075μF Rg E sense E force Fig.C.T.3 - Switching Loss Circuit Fig.C.T.4 - BVCES Filter Circuit 800 80 tf 70 600 60 500 50 400 40 90% ICE 300 30 200 ICE (A) VCE (V) 700 20 5% VCE 100 5% ICE 10 0 0 Eoff Loss -100 -1 -0.5 0 0.5 1 -10 1.5 2 time(μs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.3 www.irf.com 7 IRG7PH42UD1PbF/IRG7PH42UD1-EP TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information EXAMPLE: THIS IS AN IRFPE30 WITH AS SEMBLY LOT CODE 5657 ASS EMBLED ON WW 35, 2001 IN THE AS SEMBLY LINE "H" Note: "P" in as sembly line pos ition indicates "Lead-Free" INTERNAT IONAL RECT IFIER LOGO ASS EMBLY LOT CODE PART NUMBER IRFPE30 56 135H 57 DATE CODE YEAR 1 = 2001 WEEK 35 LINE H TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com IRG7PH42UD1PbF/IRG7PH42UD1-EP TO-247AD Package Outline Dimensions are shown in millimeters (inches) TO-247AD Part Marking Information EXAMPLE: T HIS IS AN IRGP30B120KD-E WIT H AS S EMBLY LOT CODE 5657 AS S EMBLED ON WW 35, 2000 IN T HE AS S EMBLY LINE "H" Note: "P" in as sembly line pos ition indicates "Lead-Free" INT ERNAT IONAL RECT IFIER LOGO PART NUMBER 56 AS S EMBLY LOT CODE 035H 57 DAT E CODE YEAR 0 = 2000 WEEK 35 LINE H TO-247AD package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 03/2010 www.irf.com 9