IRGP4069 Data Sheet (255 KB, EN)

PD - 97426
IRGP4069PbF
IRGP4069-EPbF
INSULATED GATE BIPOLAR TRANSISTOR
Features
•
•
•
•
•
•
•
•
•
C
Low VCE (ON) Trench IGBT Technology
Low Switching Losses
Maximum Junction Temperature 175 °C
5 μS short circuit SOA
Square RBSOA
100% of The Parts Tested for ILM
Positive VCE (ON) Temperature Coefficient
Tight Parameter Distribution
Lead Free Package
VCES = 600V
IC(Nominal) = 35A
G
tSC ≥ 5μs, TJ(max) = 175°C
E
VCE(on) typ. = 1.6V
n-channel
C
Benefits
• High Efficiency in a Wide Range of Applications
• Suitable for a Wide Range of Switching Frequencies due to
Low VCE (ON) and Low Switching Losses
• Rugged Transient Performance for Increased Reliability
• Excellent Current Sharing in Parallel Operation
C
GC
E
E
GC
TO-247AD
IRGP4069-EPbF
TO-247AC
IRGP4069PbF
G
Gate
C
Collector
E
Emitter
Absolute Maximum Ratings
Max.
Units
VCES
Collector-to-Emitter Voltage
Parameter
600
V
IC @ TC = 25°C
Continuous Collector Current
76
IC @ TC = 100°C
INOMINAL
Continuous Collector Current
50
ICM
Nominal Current
Pulse Collector Current, VGE = 15V
105
ILM
Clamped Inductive Load Current, VGE
VGE
Continuous Gate-to-Emitter Voltage
±20
Transient Gate-to-Emitter Voltage
±30
PD @ TC = 25°C
Maximum Power Dissipation
268
PD @ TC = 100°C
Maximum Power Dissipation
134
TJ
Operating Junction and
TSTG
Storage Temperature Range
35
= 20V c
A
140
V
W
-55 to +175
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter
Min.
Typ.
Max.
Units
–––
–––
0.56
°C/W
Thermal Resistance, Case-to-Sink (flat, greased surface)
–––
0.24
–––
Thermal Resistance, Junction-to-Ambient (typical socket mount)
–––
–––
40
RθJC
Thermal Resistance Junction-to-Case
RθCS
RθJA
1
f
www.irf.com
10/02/09
IRGP4069PbF/IRGP4069-EPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Max.
Units
V(BR)CES
Collector-to-Emitter Breakdown Voltage
Parameter
600
—
—
V
ΔV(BR)CES/ΔTJ
Temperature Coeff. of Breakdown Voltage
—
1.3
—
—
1.6
1.85
VCE(on)
Collector-to-Emitter Saturation Voltage
—
1.9
—
—
2.0
—
VGE(th)
Gate Threshold Voltage
4.0
—
6.5
ΔVGE(th)/ΔTJ
Threshold Voltage temp. coefficient
—
-18
—
gfe
ICES
Forward Transconductance
—
25
—
Collector-to-Emitter Leakage Current
—
1.0
20
IGES
Gate-to-Emitter Leakage Current
—
770
—
—
—
±100
Conditions
VGE = 0V, IC = 100μA
e
mV/°C VGE = 0V, IC = 1mA (25°C-175°C)
IC = 35A, VGE = 15V, TJ = 25°C
V
IC = 35A, VGE = 15V, TJ
V
d
d
= 175°C d
IC = 35A, VGE = 15V, TJ = 150°C
VCE = VGE, IC = 1.0mA
mV/°C VCE = VGE, IC = 1.0mA (25°C - 175°C)
VCE = 50V, IC = 35A, PW = 60μs
S
μA
VGE = 0V, VCE = 600V
VGE = 0V, VCE = 600V, TJ = 175°C
nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Max.
Qg
Total Gate Charge (turn-on)
Parameter
—
69
104
Qge
Gate-to-Emitter Charge (turn-on)
—
18
27
Qgc
Gate-to-Collector Charge (turn-on)
—
29
44
Eon
Turn-On Switching Loss
—
390
508
Eoff
Turn-Off Switching Loss
—
632
753
Etotal
Total Switching Loss
—
1022
1261
td(on)
Turn-On delay time
—
46
56
tr
Rise time
—
33
42
td(off)
Turn-Off delay time
—
105
117
tf
Fall time
—
44
54
Eon
Turn-On Switching Loss
—
1013
—
Eoff
Turn-Off Switching Loss
—
929
—
Etotal
Total Switching Loss
—
1942
—
td(on)
Turn-On delay time
—
43
—
tr
Rise time
—
35
—
td(off)
Turn-Off delay time
—
127
—
tf
Fall time
—
61
—
Units
Conditions
IC = 35A
nC
VGE = 15V
VCC = 400V
IC = 35A, VCC = 400V, VGE = 15V
μJ
RG = 10Ω, L = 200μH, LS = 150nH, TJ = 25°C
Energy losses include tail & diode reverse recovery
IC = 35A, VCC = 400V, VGE = 15V
ns
RG = 10Ω, L = 200μH, LS = 150nH, TJ = 25°C
IC = 35A, VCC = 400V, VGE=15V
μJ
RG=10Ω, L=200μH, LS=150nH, TJ = 175°C
Energy losses include tail & diode reverse recovery
IC = 35A, VCC = 400V, VGE = 15V
ns
RG = 10Ω, L = 200μH, LS = 150nH
TJ = 175°C
VGE = 0V
Cies
Input Capacitance
—
2113
—
Coes
Output Capacitance
—
197
—
VCC = 30V
Cres
Reverse Transfer Capacitance
—
65
—
f = 1.0Mhz
TJ = 175°C, IC = 140A
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
VCC = 480V, Vp =600V
5
VCC = 400V, Vp =600V
pF
Rg = 10Ω, VGE = +20V to 0V
SCSOA
Short Circuit Safe Operating Area
—
—
μs
Rg = 10Ω, VGE = +15V to 0V
Notes:
 VCC = 80% (VCES), VGE = 20V, L = 19μH, RG = 10Ω.
‚ Pulse width limited by max. junction temperature.
ƒ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
„ Rθ is measured at TJ of approximately 90°C.
2
www.irf.com
IRGP4069PbF/IRGP4069-EPbF
80
300
70
250
60
200
Ptot (W)
IC (A)
50
40
30
150
100
20
50
10
0
0
25
50
75
100
125
150
175
25
50
75
100
125
150
175
T C (°C)
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
1000
1000
100
10
100
10μsec
IC (A)
IC (A)
100μsec
1msec
DC
10
1
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
1
1
10
100
1000
10
100
VCE (V)
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C, TJ ≤ 175°C; VGE =15V
Fig. 4 - Reverse Bias SOA
TJ = 175°C; VGE =20V
140
140
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
120
80
VGE = 18V
VGE = 15V
VGE = 12V
120
100
ICE (A)
ICE (A)
100
60
60
40
20
20
0
VGE = 10V
VGE = 8.0V
80
40
0
0
2
4
6
VCE (V)
8
10
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = ≤60μs
www.irf.com
1000
0
2
4
6
8
10
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = ≤60μs
3
IRGP4069PbF/IRGP4069-EPbF
140
20
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
100
ICE (A)
80
18
16
14
VCE (V)
120
60
12
ICE = 18A
ICE = 35A
10
ICE = 70A
8
6
40
4
20
2
0
0
0
2
4
6
8
10
5
10
Fig. 8 - Typical VCE vs. VGE
TJ = -40°C
20
20
18
18
16
16
14
14
ICE = 18A
VCE (V)
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = ≤60μs
10
ICE = 35A
ICE = 70A
8
12
ICE = 18A
ICE = 35A
10
8
6
6
4
4
2
2
0
ICE = 70A
0
5
10
15
20
5
10
VGE (V)
120
3500
TJ = 25°C
80
T J = 175°C
40
3000
Energy (μJ)
IC, Collector-to-Emitter Current (A)
4000
60
20
Fig. 10 - Typical VCE vs. VGE
TJ = 175°C
140
100
15
VGE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = 25°C
2500
EON
2000
1500
EOFF
1000
20
500
0
0
4
5
6
7
8
9
10 11 12 13 14
VGE, Gate-to-Emitter Voltage (V)
Fig. 11 - Typ. Transfer Characteristics
VCE = 50V; tp = 60μs
4
20
VGE (V)
VCE (V)
12
15
0
10
20
30
40
50
60
70
IC (A)
Fig. 12 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V
www.irf.com
IRGP4069PbF/IRGP4069-EPbF
3000
1000
EON
tdOFF
100
Energy (μJ)
Swiching Time (ns)
2500
tF
tdON
2000
EOFF
1500
1000
tR
500
10
0
10
20
30
40
50
60
0
70
25
50
IC (A)
75
100
Rg (Ω)
Fig. 14 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 210μH; VCE = 400V, ICE = 35A; VGE = 15V
Fig. 13 - Typ. Switching Time vs. IC
TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V
300
20
1000
Isc
Time (μs)
tdOFF
100
tF
tdON
225
Tsc
10
150
5
75
Current (A)
Swiching Time (ns)
15
tR
0
0
10
0
10
20
30
40
8
50
10
12
14
16
18
VGE (V)
RG (Ω)
Fig. 15 - Typ. Switching Time vs. RG
TJ = 175°C; L = 210μH; VCE = 400V, ICE = 35A; VGE = 15V
Fig. 16 - VGE vs. Short Circuit Time
VCC = 400V; TC = 25°C
10000
Capacitance (pF)
Cies
1000
Coes
100
Cres
10
0
100
200
300
400
500
VCE (V)
Fig. 17 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
www.irf.com
5
IRGP4069PbF/IRGP4069-EPbF
VGE, Gate-to-Emitter Voltage (V)
16
VCES = 400V
VCES = 300V
14
12
10
8
6
4
2
0
0
10
20
30
40
50
60
70
Q G, Total Gate Charge (nC)
Fig. 18 - Typical Gate Charge vs. VGE
ICE = 35A; L = 740μH
1
Thermal Response ( Z thJC )
D = 0.50
0.1
0.20
0.10
0.05
0.01
τJ
0.02
0.01
R1
R1
τJ
τ1
R2
R2
R3
R3
τ1
τ2
τ2
τ3
τ3
Ci= τi/Ri
Ci i/Ri
1E-005
Ri (°C/W)
τC
τ
τ4
τ4
0.01041
τi (sec)
0.000006
0.15911
0.000142
0.23643
0.002035
0.15465
0.013806
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
R4
R4
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
6
www.irf.com
IRGP4069PbF/IRGP4069-EPbF
L
L
DUT
0
VCC
80 V +
-
1K
DUT
VCC
Rg
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
diode clamp /
DUT
L
4X
DC
-5V
VCC
DUT /
DRIVER
DUT
VCC
Rg
SCSOA
Fig.C.T.3 - S.C. SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
C force
R=
VCC
ICM
100K
D1
DUT
Rg
22K
C sense
VCC
G force
DUT
0.0075μF
E sense
E force
Fig.C.T.5 - Resistive Load Circuit
www.irf.com
Fig.C.T.6 - BVCES Filter Circuit
7
IRGP4069PbF/IRGP4069-EPbF
tf
400
600
50
500
40
400
30
300
200
20
V CE (V)
300
ICE (A)
VCE (V)
90% ICE
100
10
5% ICE
0
100
0
40
30
90% test
current
0
-10
0
0.5
1
1.5
20
5% V CE
10% test
current
10
0
Eon
Loss
Eoff Loss
-100
-0.5
50
tr
200
5% V CE
60
TEST
CURRENT
-100
2
-10
6.4
6.6
time(µs)
6.8
7
7.2
time (µs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
700
350
ICE
Vce (V)
600
300
500
250
400
200
VCE
300
150
200
100
100
50
0
ICE (A)
500
60
ICE (A)
600
0
-100
-4.5
-50
0.5
5.5
10.5
Time (uS)
Fig. WF3 - Typ. S.C. Waveform
@ TJ = 25°C using Fig. CT.3
8
www.irf.com
IRGP4069PbF/IRGP4069-EPbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
(;$03/( 7+,6,6$1,5)3(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
,5)3(
+
'$7(&2'(
<($5 :((.
/,1(+
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRGP4069PbF/IRGP4069-EPbF
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
TO-247AD Part Marking Information
(;$03/( 7+,6,6$1,5*3%.'(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
3$57180%(5
,17(51$7,21$/
5(&7,),(5
/2*2
+
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(+
TO-247AD package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 10/09
10
www.irf.com