PD - 97426 IRGP4069PbF IRGP4069-EPbF INSULATED GATE BIPOLAR TRANSISTOR Features • • • • • • • • • C Low VCE (ON) Trench IGBT Technology Low Switching Losses Maximum Junction Temperature 175 °C 5 μS short circuit SOA Square RBSOA 100% of The Parts Tested for ILM Positive VCE (ON) Temperature Coefficient Tight Parameter Distribution Lead Free Package VCES = 600V IC(Nominal) = 35A G tSC ≥ 5μs, TJ(max) = 175°C E VCE(on) typ. = 1.6V n-channel C Benefits • High Efficiency in a Wide Range of Applications • Suitable for a Wide Range of Switching Frequencies due to Low VCE (ON) and Low Switching Losses • Rugged Transient Performance for Increased Reliability • Excellent Current Sharing in Parallel Operation C GC E E GC TO-247AD IRGP4069-EPbF TO-247AC IRGP4069PbF G Gate C Collector E Emitter Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 600 V IC @ TC = 25°C Continuous Collector Current 76 IC @ TC = 100°C INOMINAL Continuous Collector Current 50 ICM Nominal Current Pulse Collector Current, VGE = 15V 105 ILM Clamped Inductive Load Current, VGE VGE Continuous Gate-to-Emitter Voltage ±20 Transient Gate-to-Emitter Voltage ±30 PD @ TC = 25°C Maximum Power Dissipation 268 PD @ TC = 100°C Maximum Power Dissipation 134 TJ Operating Junction and TSTG Storage Temperature Range 35 = 20V c A 140 V W -55 to +175 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Parameter Min. Typ. Max. Units ––– ––– 0.56 °C/W Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.24 ––– Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– ––– 40 RθJC Thermal Resistance Junction-to-Case RθCS RθJA 1 f www.irf.com 10/02/09 IRGP4069PbF/IRGP4069-EPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Units V(BR)CES Collector-to-Emitter Breakdown Voltage Parameter 600 — — V ΔV(BR)CES/ΔTJ Temperature Coeff. of Breakdown Voltage — 1.3 — — 1.6 1.85 VCE(on) Collector-to-Emitter Saturation Voltage — 1.9 — — 2.0 — VGE(th) Gate Threshold Voltage 4.0 — 6.5 ΔVGE(th)/ΔTJ Threshold Voltage temp. coefficient — -18 — gfe ICES Forward Transconductance — 25 — Collector-to-Emitter Leakage Current — 1.0 20 IGES Gate-to-Emitter Leakage Current — 770 — — — ±100 Conditions VGE = 0V, IC = 100μA e mV/°C VGE = 0V, IC = 1mA (25°C-175°C) IC = 35A, VGE = 15V, TJ = 25°C V IC = 35A, VGE = 15V, TJ V d d = 175°C d IC = 35A, VGE = 15V, TJ = 150°C VCE = VGE, IC = 1.0mA mV/°C VCE = VGE, IC = 1.0mA (25°C - 175°C) VCE = 50V, IC = 35A, PW = 60μs S μA VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 175°C nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Qg Total Gate Charge (turn-on) Parameter — 69 104 Qge Gate-to-Emitter Charge (turn-on) — 18 27 Qgc Gate-to-Collector Charge (turn-on) — 29 44 Eon Turn-On Switching Loss — 390 508 Eoff Turn-Off Switching Loss — 632 753 Etotal Total Switching Loss — 1022 1261 td(on) Turn-On delay time — 46 56 tr Rise time — 33 42 td(off) Turn-Off delay time — 105 117 tf Fall time — 44 54 Eon Turn-On Switching Loss — 1013 — Eoff Turn-Off Switching Loss — 929 — Etotal Total Switching Loss — 1942 — td(on) Turn-On delay time — 43 — tr Rise time — 35 — td(off) Turn-Off delay time — 127 — tf Fall time — 61 — Units Conditions IC = 35A nC VGE = 15V VCC = 400V IC = 35A, VCC = 400V, VGE = 15V μJ RG = 10Ω, L = 200μH, LS = 150nH, TJ = 25°C Energy losses include tail & diode reverse recovery IC = 35A, VCC = 400V, VGE = 15V ns RG = 10Ω, L = 200μH, LS = 150nH, TJ = 25°C IC = 35A, VCC = 400V, VGE=15V μJ RG=10Ω, L=200μH, LS=150nH, TJ = 175°C Energy losses include tail & diode reverse recovery IC = 35A, VCC = 400V, VGE = 15V ns RG = 10Ω, L = 200μH, LS = 150nH TJ = 175°C VGE = 0V Cies Input Capacitance — 2113 — Coes Output Capacitance — 197 — VCC = 30V Cres Reverse Transfer Capacitance — 65 — f = 1.0Mhz TJ = 175°C, IC = 140A RBSOA Reverse Bias Safe Operating Area FULL SQUARE VCC = 480V, Vp =600V 5 VCC = 400V, Vp =600V pF Rg = 10Ω, VGE = +20V to 0V SCSOA Short Circuit Safe Operating Area — — μs Rg = 10Ω, VGE = +15V to 0V Notes: VCC = 80% (VCES), VGE = 20V, L = 19μH, RG = 10Ω. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. Rθ is measured at TJ of approximately 90°C. 2 www.irf.com IRGP4069PbF/IRGP4069-EPbF 80 300 70 250 60 200 Ptot (W) IC (A) 50 40 30 150 100 20 50 10 0 0 25 50 75 100 125 150 175 25 50 75 100 125 150 175 T C (°C) T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 1000 1000 100 10 100 10μsec IC (A) IC (A) 100μsec 1msec DC 10 1 Tc = 25°C Tj = 175°C Single Pulse 0.1 1 1 10 100 1000 10 100 VCE (V) VCE (V) Fig. 3 - Forward SOA TC = 25°C, TJ ≤ 175°C; VGE =15V Fig. 4 - Reverse Bias SOA TJ = 175°C; VGE =20V 140 140 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 120 80 VGE = 18V VGE = 15V VGE = 12V 120 100 ICE (A) ICE (A) 100 60 60 40 20 20 0 VGE = 10V VGE = 8.0V 80 40 0 0 2 4 6 VCE (V) 8 10 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = ≤60μs www.irf.com 1000 0 2 4 6 8 10 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = ≤60μs 3 IRGP4069PbF/IRGP4069-EPbF 140 20 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 100 ICE (A) 80 18 16 14 VCE (V) 120 60 12 ICE = 18A ICE = 35A 10 ICE = 70A 8 6 40 4 20 2 0 0 0 2 4 6 8 10 5 10 Fig. 8 - Typical VCE vs. VGE TJ = -40°C 20 20 18 18 16 16 14 14 ICE = 18A VCE (V) VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 175°C; tp = ≤60μs 10 ICE = 35A ICE = 70A 8 12 ICE = 18A ICE = 35A 10 8 6 6 4 4 2 2 0 ICE = 70A 0 5 10 15 20 5 10 VGE (V) 120 3500 TJ = 25°C 80 T J = 175°C 40 3000 Energy (μJ) IC, Collector-to-Emitter Current (A) 4000 60 20 Fig. 10 - Typical VCE vs. VGE TJ = 175°C 140 100 15 VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = 25°C 2500 EON 2000 1500 EOFF 1000 20 500 0 0 4 5 6 7 8 9 10 11 12 13 14 VGE, Gate-to-Emitter Voltage (V) Fig. 11 - Typ. Transfer Characteristics VCE = 50V; tp = 60μs 4 20 VGE (V) VCE (V) 12 15 0 10 20 30 40 50 60 70 IC (A) Fig. 12 - Typ. Energy Loss vs. IC TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V www.irf.com IRGP4069PbF/IRGP4069-EPbF 3000 1000 EON tdOFF 100 Energy (μJ) Swiching Time (ns) 2500 tF tdON 2000 EOFF 1500 1000 tR 500 10 0 10 20 30 40 50 60 0 70 25 50 IC (A) 75 100 Rg (Ω) Fig. 14 - Typ. Energy Loss vs. RG TJ = 175°C; L = 210μH; VCE = 400V, ICE = 35A; VGE = 15V Fig. 13 - Typ. Switching Time vs. IC TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V 300 20 1000 Isc Time (μs) tdOFF 100 tF tdON 225 Tsc 10 150 5 75 Current (A) Swiching Time (ns) 15 tR 0 0 10 0 10 20 30 40 8 50 10 12 14 16 18 VGE (V) RG (Ω) Fig. 15 - Typ. Switching Time vs. RG TJ = 175°C; L = 210μH; VCE = 400V, ICE = 35A; VGE = 15V Fig. 16 - VGE vs. Short Circuit Time VCC = 400V; TC = 25°C 10000 Capacitance (pF) Cies 1000 Coes 100 Cres 10 0 100 200 300 400 500 VCE (V) Fig. 17 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz www.irf.com 5 IRGP4069PbF/IRGP4069-EPbF VGE, Gate-to-Emitter Voltage (V) 16 VCES = 400V VCES = 300V 14 12 10 8 6 4 2 0 0 10 20 30 40 50 60 70 Q G, Total Gate Charge (nC) Fig. 18 - Typical Gate Charge vs. VGE ICE = 35A; L = 740μH 1 Thermal Response ( Z thJC ) D = 0.50 0.1 0.20 0.10 0.05 0.01 τJ 0.02 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 τ1 τ2 τ2 τ3 τ3 Ci= τi/Ri Ci i/Ri 1E-005 Ri (°C/W) τC τ τ4 τ4 0.01041 τi (sec) 0.000006 0.15911 0.000142 0.23643 0.002035 0.15465 0.013806 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 R4 R4 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 6 www.irf.com IRGP4069PbF/IRGP4069-EPbF L L DUT 0 VCC 80 V + - 1K DUT VCC Rg Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp / DUT L 4X DC -5V VCC DUT / DRIVER DUT VCC Rg SCSOA Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit C force R= VCC ICM 100K D1 DUT Rg 22K C sense VCC G force DUT 0.0075μF E sense E force Fig.C.T.5 - Resistive Load Circuit www.irf.com Fig.C.T.6 - BVCES Filter Circuit 7 IRGP4069PbF/IRGP4069-EPbF tf 400 600 50 500 40 400 30 300 200 20 V CE (V) 300 ICE (A) VCE (V) 90% ICE 100 10 5% ICE 0 100 0 40 30 90% test current 0 -10 0 0.5 1 1.5 20 5% V CE 10% test current 10 0 Eon Loss Eoff Loss -100 -0.5 50 tr 200 5% V CE 60 TEST CURRENT -100 2 -10 6.4 6.6 time(µs) 6.8 7 7.2 time (µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4 700 350 ICE Vce (V) 600 300 500 250 400 200 VCE 300 150 200 100 100 50 0 ICE (A) 500 60 ICE (A) 600 0 -100 -4.5 -50 0.5 5.5 10.5 Time (uS) Fig. WF3 - Typ. S.C. Waveform @ TJ = 25°C using Fig. CT.3 8 www.irf.com IRGP4069PbF/IRGP4069-EPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 ,5)3( + '$7(&2'( <($5 :((. /,1(+ TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 IRGP4069PbF/IRGP4069-EPbF TO-247AD Package Outline Dimensions are shown in millimeters (inches) TO-247AD Part Marking Information (;$03/( 7+,6,6$1,5*3%.'( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH 3$57180%(5 ,17(51$7,21$/ 5(&7,),(5 /2*2 + $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(+ TO-247AD package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/09 10 www.irf.com