PD - 97404 IRGP4063PbF IRGP4063-EPbF INSULATED GATE BIPOLAR TRANSISTOR Features • • • • • • • • • C Low VCE (ON) Trench IGBT Technology Low switching losses Maximum Junction temperature 175 °C 5 μS short circuit SOA Square RBSOA 100% of the parts tested for ILM Positive VCE (ON) Temperature co-efficient Tight parameter distribution Lead Free Package VCES = 600V IC = 48A, TC = 100°C tSC ≥ 5μs, TJ(max) = 175°C G VCE(on) typ. = 1.65V E n-channel Benefits C • High Efficiency in a wide range of applications • Suitable for a wide range of switching frequencies due to Low VCE (ON) and Low Switching losses • Rugged transient Performance for increased reliability • Excellent Current sharing in parallel operation • Low EMI C GC E E GC TO-247AD IRGP4063-EPbF TO-247AC IRGP4063PbF G Gate C Collector E Emitter Absolute Maximum Ratings Parameter Max. Units V VCES Collector-to-Emitter Voltage IC @ TC = 25°C Continuous Collector Current 600 96 IC @ TC = 100°C ICM Continuous Collector Current Pulse Collector Current, VGE = 15V 144 A ILM Clamped Inductive Load Current, VGE = 20V 192 A VGE Continuous Gate-to-Emitter Voltage ±20 V Transient Gate-to-Emitter Voltage ±30 PD @ TC = 25°C Maximum Power Dissipation 330 PD @ TC = 100°C Maximum Power Dissipation 170 TJ Operating Junction and TSTG Storage Temperature Range h 48 c W -55 to +175 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Parameter Min. Typ. Max. Units ––– ––– 0.45 °C/W Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.24 ––– Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– ––– 40 RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) RθCS RθJA 1 www.irf.com 06/30/09 IRGP4063PbF/IRGP4063-EPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. V(BR)CES Collector-to-Emitter Breakdown Voltage Parameter 600 — — ΔV(BR)CES/ΔTJ Temperature Coeff. of Breakdown Voltage — 0.30 — — 1.65 2.14 — 2.0 — — 2.05 — VCE(on) Collector-to-Emitter Saturation Voltage Max. Units VGE(th) Gate Threshold Voltage 4.0 — 6.5 ΔVGE(th)/ΔTJ Threshold Voltage temp. coefficient — -21 — gfe ICES Forward Transconductance — 32 — Collector-to-Emitter Leakage Current — 1.0 150 — 450 1000 — — ±100 IGES Gate-to-Emitter Leakage Current V Conditions VGE = 0V, IC = 150μA Ref.Fig f CT6 V/°C VGE = 0V, IC = 1mA (25°C-175°C) IC = 48A, VGE = 15V, TJ = 25°C V CT6 5,6,7 IC = 48A, VGE = 15V, TJ = 150°C 8,9,10 IC = 48A, VGE = 15V, TJ = 175°C V VCE = VGE, IC = 1.4mA mV/°C VCE = VGE, IC = 1.0mA (25°C - 175°C) S VCE = 50V, IC = 48A, PW = 80μs μA 8,9 10,11 VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 175°C nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Qg Total Gate Charge (turn-on) Parameter — 95 Max. Units 140 Qge Gate-to-Emitter Charge (turn-on) — 28 42 Qgc Gate-to-Collector Charge (turn-on) — 35 53 Eon Turn-On Switching Loss — 625 1141 Eoff Turn-Off Switching Loss — 1275 1481 Etotal Total Switching Loss — 1900 2622 td(on) Turn-On delay time — 60 78 tr Rise time — 40 56 td(off) Turn-Off delay time — 145 176 tf Fall time — 35 46 Eon — 1625 — Eoff Turn-On Switching Loss Turn-Off Switching Loss — 1585 — Etotal Total Switching Loss — 3210 — td(on) Turn-On delay time — 55 — tr Rise time — 45 — td(off) Turn-Off delay time — 165 — tf Fall time — 45 — g g Cies Input Capacitance — 3025 — Conditions Ref.Fig IC = 48A nC 18 VGE = 15V CT1 VCC = 400V IC = 48A, VCC = 400V, VGE = 15V μJ CT4 RG=10Ω, L= 200μH, LS=150nH, TJ= 25°C Energy losses include tail & diode reverse recovery IC = 48A, VCC = 400V, VGE = 15V ns CT4 RG = 10Ω, L = 200μH, LS = 150nH, TJ = 25°C IC = 48A, VCC = 400V, VGE=15V μJ RG=10Ω, L=200μH, LS=150nH, TJ = 175°C f Energy losses include tail & diode reverse recovery IC = 48A, VCC = 400V, VGE = 15V ns 12, 14 CT4 WF1, WF2 13, 15 RG = 10Ω, L = 200μH, LS = 150nH CT4 TJ = 175°C WF1 WF2 pF VGE = 0V 17 Coes Output Capacitance — 245 — VCC = 30V Cres Reverse Transfer Capacitance — 90 — f = 1.0Mhz TJ = 175°C, IC = 192A 4 RBSOA Reverse Bias Safe Operating Area FULL SQUARE VCC = 480V, Vp =600V CT2 SCSOA Short Circuit Safe Operating Area 5 Rg = 10Ω, VGE = +15V to 0V — — μs VCC = 400V, Vp =600V Rg = 10Ω, VGE = +15V to 0V 16, CT3 WF3 Notes: VCC = 80% (VCES), VGE = 20V, L = 200μH, RG = 10Ω. This is only applied to TO-247AC package. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. Turn-on energy is measured using the same co-pak diode as IRGP4063DPbF. Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 80A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. 2 www.irf.com IRGP4063PbF/IRGP4063-EPbF 100 350 90 300 80 250 70 200 Ptot (W) IC (A) 60 50 40 150 30 100 20 50 10 0 0 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 T C (°C) T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 1000 1000 100 10μsec 100 IC (A) IC (A) 100μsec 1msec 10 10 DC 1 Tc = 25°C Tj = 175°C Single Pulse 0.1 1 1 10 100 1000 10 100 VCE (V) VCE (V) Fig. 3 - Forward SOA TC = 25°C, TJ ≤ 175°C; VGE =15V 200 180 180 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 120 160 100 80 120 100 80 60 60 40 40 20 20 0 0 0 2 4 6 VCE (V) 8 10 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80μs www.irf.com VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 140 ICE (A) 140 ICE (A) Fig. 4 - Reverse Bias SOA TJ = 175°C; VGE =15V 200 160 1000 0 2 4 6 8 10 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80μs 3 IRGP4063PbF/IRGP4063-EPbF 200 20 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 180 160 16 14 120 VCE (V) ICE (A) 140 18 100 80 12 6 40 4 20 2 0 0 2 4 6 8 10 5 20 20 18 18 16 16 14 14 VCE (V) ICE = 24A ICE = 48A 10 ICE = 96A 8 12 20 ICE = 24A ICE = 48A 10 ICE = 96A 8 6 6 4 4 2 2 0 0 5 10 15 5 20 10 15 20 VGE (V) VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = 25°C Fig. 10 - Typical VCE vs. VGE TJ = 175°C 6000 200 180 T J = 25°C T J = 175°C 160 5000 EOFF 140 4000 Energy (μJ) ICE (A) 15 Fig. 8 - Typical VCE vs. VGE TJ = -40°C Fig. 7 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 80μs 12 10 VGE (V) VCE (V) VCE (V) ICE = 96A 8 60 0 ICE = 24A ICE = 48A 10 120 100 80 EON 3000 2000 60 40 1000 20 0 0 0 5 10 VGE (V) Fig. 11 - Typ. Transfer Characteristics VCE = 50V; tp = 10μs 4 15 0 50 100 150 IC (A) Fig. 12 - Typ. Energy Loss vs. IC TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V www.irf.com IRGP4063PbF/IRGP4063-EPbF 5000 1000 4500 EOFF tdOFF 100 tdON EON 3500 Energy (μJ) Swiching Time (ns) 4000 3000 2500 tF 2000 tR 1500 1000 10 0 20 40 60 80 0 100 25 IC (A) tdOFF 125 tR Time (μs) tdON 100 tF 18 400 16 350 14 300 12 250 10 200 8 150 6 100 50 4 10 0 25 50 75 100 8 125 Current (A) Swiching Time (ns) 100 Fig. 14 - Typ. Energy Loss vs. RG TJ = 175°C; L = 200μH; VCE = 400V, ICE = 48A; VGE = 15V 1000 10 12 14 16 18 VGE (V) RG (Ω) Fig. 15 - Typ. Switching Time vs. RG TJ = 175°C; L = 200μH; VCE = 400V, ICE = 48A; VGE = 15V Fig. 16 - VGE vs. Short Circuit Time VCC = 400V; TC = 25°C 10000 16 VGE, Gate-to-Emitter Voltage (V) Cies Capacitance (pF) 75 Rg (Ω) Fig. 13 - Typ. Switching Time vs. IC TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V 1000 Coes 100 Cres 10 V CES = 300V 14 V CES = 400V 12 10 8 6 4 2 0 0 20 40 60 80 VCE (V) Fig. 17 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz www.irf.com 50 100 0 25 50 75 100 Q G, Total Gate Charge (nC) Fig. 18 - Typical Gate Charge vs. VGE ICE = 48A; L = 600μH 5 IRGP4063PbF/IRGP4063-EPbF 1 Thermal Response ( Z thJC ) D = 0.50 0.1 0.20 0.10 0.05 0.01 0.001 0.02 0.01 τJ SINGLE PULSE ( THERMAL RESPONSE ) R1 R1 τJ τ1 τ1 R2 R2 τ2 R3 R3 τ3 τ2 Ci= τi/Ri Ci i/Ri τC τ τ3 Ri (°C/W) τi (sec) 0.0872 0.000114 0.1599 0.001520 0.2020 0.020330 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 6 www.irf.com IRGP4063PbF/IRGP4063-EPbF L L DUT 0 VCC 80 V + - 1K DUT VCC Rg Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp / DUT L 4X DC -5V VCC DUT / DRIVER DUT VCC Rg SCSOA Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit C force R= VCC ICM 100K D1 DUT Rg 22K C sense VCC G force DUT 0.0075μF E sense E force Fig.C.T.5 - Resistive Load Circuit www.irf.com Fig.C.T.6 - BVCES Filter Circuit 7 IRGP4063PbF/IRGP4063-EPbF 700 140 600 120 600 120 500 100 500 100 80 tf 300 VCE (V) VCE (V) 400 tr 400 60 90% ICE 200 -100 -0.40 60 90% test 200 40 100 5% VCE 0 0 EOFF Loss 0.10 300 10% test 20 5% ICE 0 TEST CURRE 40 5% VCE 100 80 20 0 EON -20 1.10 0.60 -100 6.20 6.40 Time(µs) 6.60 6.80 -20 7.00 Time (µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 600 600 500 500 ICE VCE 400 300 300 200 200 100 100 0 0 -100 -5.00 -100 10.00 0.00 5.00 I CE (A) 400 VCE (V) Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4 time (µS) Fig. WF3 - Typ. S.C. Waveform @ TJ = 25°C using Fig. CT.3 8 www.irf.com IRGP4063PbF/IRGP4063-EPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 ,5)3( + '$7(&2'( <($5 :((. /,1(+ TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 IRGP4063PbF/IRGP4063-EPbF TO-247AD Package Outline Dimensions are shown in millimeters (inches) TO-247AD Part Marking Information (;$03/( 7+,6,6$1,5*3%.'( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH 3$57180%(5 ,17(51$7,21$/ 5(&7,),(5 /2*2 + $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(+ TO-247AD package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 06/09 10 www.irf.com