PD - 97577 IRGP4066PbF IRGP4066-EPbF INSULATED GATE BIPOLAR TRANSISTOR Features • • • • • • • • • C Low VCE (ON) Trench IGBT Technology Low Switching Losses Maximum Junction Temperature 175 °C 5 μS short circuit SOA Square RBSOA 100% of The Parts Tested for ILM Positive VCE (ON) Temperature Coefficient Tight Parameter Distribution Lead Free Package VCES = 600V IC(Nominal) = 75A G tSC ≥ 5μs, TJ(max) = 175°C E VCE(on) typ. = 1.7V n-channel C C Benefits • High Efficiency in a Wide Range of Applications • Suitable for a Wide Range of Switching Frequencies due to Low VCE (ON) and Low Switching Losses • Rugged Transient Performance for Increased Reliability • Excellent Current Sharing in Parallel Operation E C G E C G TO-247AC IRGP4066PbF G Gate TO-247AD IRGP4066-EPbF C Collector E Emitter Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 600 V IC @ TC = 25°C Continuous Collector Current 140 IC @ TC = 100°C INOMINAL Continuous Collector Current 90 ICM Nominal Current Pulse Collector Current, VGE = 15V 225 ILM Clamped Inductive Load Current, VGE = 20V VGE Continuous Gate-to-Emitter Voltage ±20 Transient Gate-to-Emitter Voltage ±30 PD @ TC = 25°C Maximum Power Dissipation 454 PD @ TC = 100°C Maximum Power Dissipation 227 TJ Operating Junction and TSTG Storage Temperature Range 75 c A 300 V W -55 to +175 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Parameter Min. Typ. Max. Units ––– ––– 0.33 °C/W Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.24 ––– Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– ––– 40 RθJC Thermal Resistance Junction-to-Case RθCS RθJA 1 f www.irf.com 10/8/2010 IRGP4066PbF/IRGP4066-EPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)CES Collector-to-Emitter Breakdown Voltage ΔV(BR)CES/ΔTJ Temperature Coeff. of Breakdown Voltage Min. Typ. Max. Units 600 — — V — 260 — — 1.7 2.1 — VCE(on) Collector-to-Emitter Saturation Voltage — 2.0 — 2.1 — VGE(th) Gate Threshold Voltage 4.0 — 6.5 ΔVGE(th)/ΔTJ Threshold Voltage temp. coefficient — -16 — gfe ICES Forward Transconductance — 50 — Collector-to-Emitter Leakage Current — 1.0 100 — 1040 — — — ±200 IGES Gate-to-Emitter Leakage Current Conditions VGE = 0V, IC = 100μA e mV/°C VGE = 0V, IC = 2.0mA (25°C-175°C) IC = 75A, VGE = 15V, TJ = 25°C V V IC = 75A, VGE = 15V, TJ V d d = 175°C d IC = 75A, VGE = 15V, TJ = 150°C VCE = VGE, IC = 2.1mA mV/°C VCE = VGE, IC = 2.1mA (25°C - 175°C) VCE = 50V, IC = 75A, PW = 60μs S μA VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 175°C nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. Qg Total Gate Charge (turn-on) Parameter — 150 225 Qge Gate-to-Emitter Charge (turn-on) — 40 60 Qgc Gate-to-Collector Charge (turn-on) — 60 90 Eon Turn-On Switching Loss — 2465 3360 Eoff Turn-Off Switching Loss — 2155 3040 Etotal Total Switching Loss — 4620 6400 Units Conditions IC = 75A nC VGE = 15V VCC = 400V IC = 75A, VCC = 400V, VGE = 15V μJ RG = 10Ω, L = 200μH, TJ = 25°C Energy losses include tail & diode reverse recovery td(on) Turn-On delay time — 50 70 tr Rise time — 70 90 IC = 75A, VCC = 400V, VGE = 15V td(off) Turn-Off delay time — 200 225 tf Fall time — 60 80 Eon Turn-On Switching Loss — 3870 — Eoff Turn-Off Switching Loss — 2815 — Etotal Total Switching Loss — 6685 — Energy losses include tail & diode reverse recovery td(on) Turn-On delay time — 50 — IC = 75A, VCC = 400V, VGE = 15V tr Rise time — 70 — td(off) Turn-Off delay time — 240 — tf Fall time — 70 — ns RG = 10Ω, L = 200μH, TJ = 25°C IC = 75A, VCC = 400V, VGE=15V μJ ns RG=10Ω, L=200μH,TJ = 175°C RG = 10Ω, L = 200μH TJ = 175°C Cies Input Capacitance — 4440 — Coes Output Capacitance — 245 — VCC = 30V Cres Reverse Transfer Capacitance — 130 — f = 1.0Mhz TJ = 175°C, IC = 300A RBSOA Reverse Bias Safe Operating Area FULL SQUARE pF VGE = 0V VCC = 480V, Vp = 600V Rg = 10Ω, VGE = +20V to 0V SCSOA Short Circuit Safe Operating Area 5 — — μs VCC = 400V, Vp 600V Rg = 10Ω, VGE = +15V to 0V Notes: VCC = 80% (VCES), VGE = 20V, L = 10μH, RG = 10Ω. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. Rθ is measured at TJ of approximately 90°C. 2 www.irf.com IRGP4066PbF/IRGP4066-EPbF 140 400 120 300 80 Ptot (W) IC (A) 100 60 200 40 100 20 0 0 25 50 75 100 125 150 175 25 50 75 100 125 150 175 T C (°C) T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 1000 1000 100μsec 10μsec 100 100 10 IC (A) IC (A) 1msec DC 10 1 Tc = 25°C Tj = 175°C Single Pulse 0.1 1 1 10 100 1000 10 100 VCE (V) VCE (V) Fig. 3 - Forward SOA TC = 25°C, TJ ≤ 175°C; VGE =15V Fig. 4 - Reverse Bias SOA TJ = 175°C; VGE =20V 300 300 250 150 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 200 VGE = 12V VGE = 10V ICE (A) ICE (A) 250 VGE = 18V VGE = 15V 200 VGE = 8.0V 150 100 100 50 50 0 0 0 2 4 6 VCE (V) 8 10 Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = ≤60μs www.irf.com 1000 0 2 4 6 8 10 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = ≤60μs 3 IRGP4066PbF/IRGP4066-EPbF 300 20 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V ICE (A) 200 18 16 14 VCE (V) 250 150 100 12 ICE = 38A ICE = 75A 10 ICE = 150A 8 6 4 50 2 0 0 0 2 4 6 8 10 5 10 Fig. 8 - Typical VCE vs. VGE TJ = -40°C 20 20 18 18 16 16 14 14 VCE (V) VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 175°C; tp = ≤60μs ICE = 38A ICE = 75A 10 ICE = 150A 8 12 ICE = 38A ICE = 75A ICE = 150A 10 8 6 6 4 4 2 2 0 0 5 10 15 20 5 10 VGE (V) 20 Fig. 10 - Typical VCE vs. VGE TJ = 175°C 12000 300 250 10000 T J = 25°C T J = 175°C 200 8000 Energy (μJ) IC, Collector-to-Emitter Current (A) 15 VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = 25°C 150 EON 6000 100 4000 50 2000 0 EOFF 0 4 6 8 10 12 14 16 VGE, Gate-to-Emitter Voltage (V) Fig. 11 - Typ. Transfer Characteristics VCE = 50V; tp = 60μs 4 20 VGE (V) VCE (V) 12 15 18 0 25 50 75 100 125 150 IC (A) Fig. 12 - Typ. Energy Loss vs. IC TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V www.irf.com IRGP4066PbF/IRGP4066-EPbF 11000 1000 9000 Energy (μJ) Swiching Time (ns) tdOFF tF 100 7000 EON 5000 tdON EOFF 3000 tR 1000 10 0 50 100 0 150 25 IC (A) 75 100 Rg (Ω) Fig. 13 - Typ. Switching Time vs. IC TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V Fig. 14 - Typ. Energy Loss vs. RG TJ = 175°C; L = 200μH; VCE = 400V, ICE = 75A; VGE = 15V 800 20 10000 Tsc 15 Swiching Time (ns) 50 600 1000 Time (μs) tF tR 100 tdON Isc 10 400 5 200 0 0 10 0 20 40 60 80 100 8 120 Current (A) tdOFF 10 12 14 16 18 VGE (V) RG (Ω) Fig. 15 - Typ. Switching Time vs. RG TJ = 175°C; L = 200μH; VCE = 400V, ICE = 75A; VGE = 15V Fig. 16 - VGE vs. Short Circuit Time VCC = 400V; TC = 25°C 10000 Capacitance (pF) Cies 1000 Coes 100 Cres 10 0 100 200 300 400 500 VCE (V) Fig. 17 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz www.irf.com 5 IRGP4066PbF/IRGP4066-EPbF VGE, Gate-to-Emitter Voltage (V) 16 VCES = 400V VCES = 300V 14 12 10 8 6 4 2 0 0 20 40 60 80 100 120 140 160 Q G, Total Gate Charge (nC) Fig. 18 - Typical Gate Charge vs. VGE ICE = 75A; L = 485μH Thermal Response ( Z thJC ) 1 D = 0.50 0.1 0.20 0.10 0.05 0.01 0.001 0.02 0.01 τJ SINGLE PULSE ( THERMAL RESPONSE ) R1 R1 τJ τ1 R2 R2 R3 R3 R4 R4 Ri (°C/W) τC τ τ2 τ1 τ2 τ3 τ3 Ci= τi/Ri Ci i/Ri τ4 τ4 τi (sec) 0.00738 0.000009 0.09441 0.000179 0.13424 0.002834 0.09294 0.0182 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 6 www.irf.com IRGP4066PbF/IRGP4066-EPbF L L DUT 0 VCC 80 V + - 1K DUT VCC Rg Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp / DUT L 4X DC -5V VCC DUT / DRIVER DUT VCC Rg SCSOA Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit C force R= VCC ICM 100K D1 DUT Rg 22K C sense VCC G force DUT 0.0075μF E sense E force Fig.C.T.5 - Resistive Load Circuit www.irf.com Fig.C.T.6 - BVCES Filter Circuit 7 IRGP4066PbF/IRGP4066-EPbF 600 120 600 120 tr tf 500 400 80 400 300 60 300 200 40 TEST CURRENT VCE (V) ICE (A) 80 90% ICE 200 5% V CE 100 10% ICE 5% ICE 0 0 0 -1.0E-07 1.0E-07 40 0 Eon Loss -100 7.4E-06 -20 3.0E-07 60 20 Eoff Loss -100 -3.0E-07 5% V CE 100 20 100 7.7E-06 8.0E-06 -20 8.3E-06 time(µs) time (µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4 700 700 600 600 VCE 500 500 Vce (V) 400 400 300 300 ICE 200 200 100 100 0 ICE (A) VCE (V) 90% ICE ICE (A) 100 500 0 -100 -100 -3 0 3 6 9 12 Time (uS) Fig. WF3 - Typ. S.C. Waveform @ TJ = 25°C using Fig. CT.3 8 www.irf.com IRGP4066PbF/IRGP4066-EPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 ,5)3( + '$7(&2'( <($5 :((. /,1(+ TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 IRGP4066PbF/IRGP4066-EPbF TO-247AD Package Outline Dimensions are shown in millimeters (inches) TO-247AD Part Marking Information (;$03/( 7+,6,6$1,5*3%.'( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH 3$57180%(5 ,17(51$7,21$/ 5(&7,),(5 /2*2 + $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(+ TO-247AD package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/2010 10 www.irf.com