IRF6614 Data Sheet (269 KB, EN)

PD -97090
IRF6614PbF
IRF6614TRPbF
DirectFET™ Power MOSFET ‚
Typical values (unless otherwise specified)
RoHS Compliant 
Lead-Free (Qualified up to 260°C Reflow)
l Application Specific MOSFETs
l Ideal for CPU Core DC-DC Converters
l Low Conduction Losses and Switching Losses
l Low Profile (<0.7mm)
l Dual Sided Cooling Compatible 
l Compatible with existing Surface Mount Techniques 
l
l
VDSS
VGS
RDS(on)
RDS(on)
40V max ±20V max 5.9mΩ@ 10V 7.1mΩ@ 4.5V
Qg
Qgd
Qgs2
Qrr
Qoss
Vgs(th)
6.0nC
1.4nC
5.5nC
9.5nC
1.8V
tot
19nC
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SQ
SX
ST
MQ
MX
MT
DirectFET™ ISOMETRIC
ST
Description
The IRF6614PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to
achieve the lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET
package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infrared or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best
thermal resistance by 80%.
The IRF6614PbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction
and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest
generation of processors operating at higher frequencies. The IRF6614PbF has been optimized for parameters that are critical in
synchronous buck operating from 12 volt bus converters including Rds(on) and gate charge to minimize losses in the control FET
socket.
Absolute Maximum Ratings
Max.
Units
VDS
Drain-to-Source Voltage
40
V
VGS
Gate-to-Source Voltage
±20
Parameter
e
e
@ 10V f
ID @ TA = 25°C
Continuous Drain Current, VGS @ 10V
12.7
ID @ TA = 70°C
Continuous Drain Current, VGS @ 10V
10.1
ID @ TC = 25°C
Continuous Drain Current, VGS
IDM
Pulsed Drain Current
EAS
Single Pulse Avalanche Energy
IAR
Avalanche Current
g
h
ID = 12.7A
16
12
TJ = 125°C
8
TJ = 25°C
4
2.0
4.0
6.0
8.0
VGS, Gate-to-Source Voltage (V)
10.0
Fig 1. Typical On-Resistance Vs. Gate Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
102
VGS, Gate-to-Source Voltage (V)
Typical R DS (on) (mΩ)
20
g
A
55
22
mJ
10.2
A
12
ID= 10.2A
10
VDS = 32V
VDS= 20V
8
6
4
2
0
0
10
20
30
40
50
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
… Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 0.43mH, RG = 25Ω, IAS = 10.2A.
1
5/5/06
IRF6614PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Conditions
Typ. Max. Units
BVDSS
Drain-to-Source Breakdown Voltage
40
–––
–––
∆ΒVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
38
–––
RDS(on)
Static Drain-to-Source On-Resistance
–––
5.9
8.3
–––
7.1
9.9
VGS = 0V, ID = 250µA
V
mV/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 12.7A i
VGS = 4.5V, ID = 10.2A i
VDS = VGS, ID = 250µA
VGS(th)
Gate Threshold Voltage
1.35
1.80
2.25
V
∆VGS(th)/∆TJ
Gate Threshold Voltage Coefficient
–––
-5.5
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
–––
–––
1.0
µA
–––
–––
150
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
gfs
Forward Transconductance
71
–––
–––
Qg
Total Gate Charge
–––
19
29
Pre-Vth Gate-to-Source Charge
–––
5.9
–––
VDS = 20V
VGS = 4.5V
IGSS
Qgs1
VDS = 32V, VGS = 0V
VDS = 32V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
S
VDS = 10V, ID = 10.2A
Qgs2
Post-Vth Gate-to-Source Charge
–––
1.4
–––
Qgd
Gate-to-Drain Charge
–––
6.0
–––
ID = 10.2A
Qgodr
Gate Charge Overdrive
–––
5.7
–––
See Fig. 15
Qsw
Switch Charge (Qgs2 + Qgd)
–––
7.4
–––
Qoss
Output Charge
–––
9.5
–––
nC
RG
Gate Resistance
–––
1.0
1.5
Ω
td(on)
Turn-On Delay Time
–––
13
–––
VDD = 20V, VGS = 4.5Vi
tr
Rise Time
–––
27
–––
ID = 10.2A
td(off)
Turn-Off Delay Time
–––
18
–––
tf
Fall Time
–––
3.6
–––
Ciss
Input Capacitance
–––
2560
Coss
Output Capacitance
–––
Crss
Reverse Transfer Capacitance
–––
nC
VDS = 16V, VGS = 0V
ns
Clamped Inductive Load
–––
VGS = 0V
370
–––
pF
VDS = 20V
200
–––
ƒ = 1.0MHz
Diode Characteristics
Parameter
IS
Continuous Source Current
Min.
–––
Typ. Max. Units
–––
Pulsed Source Current
MOSFET symbol
53
(Body Diode)
ISM
A
–––
–––
Conditions
showing the
integral reverse
102
p-n junction diode.
(Body Diode)g
TJ = 25°C, IS = 10.2A, VGS = 0V i
VSD
Diode Forward Voltage
–––
–––
1.0
trr
Reverse Recovery Time
–––
15
23
ns
TJ = 25°C, IF = 10.2A
Qrr
Reverse Recovery Charge
8.3
nC
di/dt = 100A/µs i
–––
5.5
V
Notes:
… Repetitive rating; pulse width limited by max. junction temperature.
‡ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRF6614PbF
Absolute Maximum Ratings
Parameter
PD @TC = 25°C
e
Power Dissipation e
Power Dissipation f
TP
Peak Soldering Temperature
TJ
Operating Junction and
TSTG
Storage Temperature Range
Max.
Units
2.1
W
Power Dissipation
PD @TA = 25°C
PD @TA = 70°C
1.4
42
270
°C
-40 to + 150
Thermal Resistance
Parameter
el
Junction-to-Ambient jl
Junction-to-Ambient kl
Junction-to-Case fl
RθJA
Typ.
Max.
–––
58
12.5
–––
20
–––
–––
3.0
Junction-to-Ambient
RθJA
RθJA
RθJC
RθJ-PCB
Junction-to-PCB Mounted
Linear Derating Factor
1.0
e
Units
°C/W
–––
0.017
W/°C
100
Thermal Response ( Z thJA )
D = 0.50
0.20
10
0.10
0.05
0.02
0.01
1
τJ
0.1
R1
R1
τJ
τ1
R2
R2
R3
R3
R4
R4
Ri (°C/W)
R5
R5
τC
τ2
τ1
τ2
τ3
τ3
τ4
τ4
τ5
τ5
Ci= τi/Ri
Ci= τi/Ri
0.01
SINGLE PULSE
( THERMAL RESPONSE )
τ
τi (sec)
0.6676
0.000066
1.0462
0.000896
1.5611
0.004386
29.282
0.68618
25.455
32
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Notes:
‰ Mounted on minimum footprint full size board with metalized
ƒ Surface mounted on 1 in. square Cu board, steady state.
„ TC measured with thermocouple incontact with top (Drain) of part. back and with small clip heatsink.
Š Rθ is measured at TJ of approximately 90°C.
ˆ Used double sided cooling, mounting pad with large heatsink.
ƒ Surface mounted on 1 in. square Cu
board (still air).
www.irf.com
‰ Mounted to a PCB with
small clip heatsink (still air)
‰ Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
3
IRF6614PbF
1000
1000
100
BOTTOM
10
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.5V
2.3V
1
2.3V
0.1
≤ 60µs PULSE WIDTH
Tj = 25°C
0.01
100
BOTTOM
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.5V
2.3V
10
2.3V
≤ 60µs PULSE WIDTH
Tj = 150°C
1
0.1
1
10
100
0.1
VDS , Drain-to-Source Voltage (V)
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
Fig 5. Typical Output Characteristics
100.0
2.0
Typical R DS(on) (Normalized)
ID, Drain-to-Source Current(Α)
ID = 12.7A
TJ = 150°C
TJ = 25°C
TJ = -40°C
10.0
1.0
VDS = 15V
VGS = 10V
1.5
1.0
≤ 60µs PULSE WIDTH
0.1
1.5
2.0
2.5
3.0
3.5
0.5
4.0
-60 -40 -20
VGS, Gate-to-Source Voltage (V)
60
80 100 120 140 160
30
TA= 25°C
VGS = 3.0V
25
VGS = 3.5V
(mΩ)
Coss = Cds + Cgd
DS(on)
Ciss
2000
Typical R
C, Capacitance (pF)
40
Fig 7. Normalized On-Resistance vs. Temperature
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
3000
20
TJ , Junction Temperature (°C)
Fig 6. Typical Transfer Characteristics
4000
0
1000
VGS = 4.0V
20
VGS = 4.5V
VGS = 5.0V
VGS = 10V
15
10
Coss
Crss
0
5
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
0
20
40
60
80
ID, Drain Current (A)
Fig 9. Typical On-Resistance Vs.
Drain Current and Gate Voltage
www.irf.com
IRF6614PbF
1000
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
100.0
10.0
TJ = 150°C
TJ = 25°C
TJ = -40°C
1.0
OPERATION IN THIS AREA
LIMITED BY R DS (on)
100
100µsec
10
1msec
DC
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.1
0.1
0.2
0.6
1.0
1.4
1.8
0.01
2.2
0.10
1.00
10.00
100.00
VDS , Drain-toSource Voltage (V)
VSD , Source-to-Drain Voltage (V)
Fig 10. Typical Source-Drain Diode Forward Voltage
Fig11. Maximum Safe Operating Area
60
VGS(th) Gate threshold Voltage (V)
2.5
50
ID , Drain Current (A)
10msec
1
40
30
20
10
0
2.0
ID = 250µA
1.5
1.0
0.5
25
50
75
100
125
150
-75
-50
-25
TJ , Junction Temperature (°C)
25
50
75
100
125
150
TJ , Temperature ( °C )
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
100
EAS, Single Pulse Avalanche Energy (mJ)
0
ID
4.3A
6.4A
BOTTOM 10.2A
TOP
80
60
40
20
0
25
50
75
100
125
150
Starting TJ, Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy Vs. Drain Current
www.irf.com
5
IRF6614PbF
Id
Vds
Vgs
L
VCC
DUT
0
1K
Vgs(th)
Qgs1 Qgs2
Fig 15a. Gate Charge Test Circuit
Qgd
Qgodr
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
V
RGSG
+
V
- DD
IAS
20V
tp
A
I AS
0.01Ω
Fig 16c. Unclamped Inductive Waveforms
Fig 16b. Unclamped Inductive Test Circuit
LD
VDS
VDS
90%
+
VDD D.U.T
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 17a. Switching Time Test Circuit
6
10%
VGS
td(on)
tr
td(off)
tf
Fig 17b. Switching Time Waveforms
www.irf.com
IRF6614PbF
D.U.T
Driver Gate Drive
+
ƒ
+
‚
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
VDD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
-
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, ST Outline
(Small Size Can, T-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
G
D
www.irf.com
S
S
D
D
7
IRF6614PbF
DirectFET™ Outline Dimension, ST Outline
(Small Size Can, T-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
MAX
CODE MIN
4.85
A
4.75
3.95
B
3.70
2.85
C
2.75
0.45
D
0.35
0.62
E
0.58
0.62
F
0.58
0.79
G
0.75
0.57
H
0.53
0.30
J
0.26
0.98
K
0.88
2.28
L
2.18
M
0.616 0.676
R
0.020 0.080
0.17
P
0.08
IMPERIAL
MIN
MAX
0.187
0.191
0.146
0.156
0.108
0.112
0.014
0.018
0.023
0.024
0.023
0.024
0.030
0.031
0.021
0.022
0.010
0.012
0.035
0.039
0.086
0.090
0.0235 0.0274
0.0008 0.0031
0.003
0.007
DirectFET™ Part Marking
8
www.irf.com
IRF6614PbF
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6614TRPBF). For 1000 parts on 7"
reel, order IRF6614TR1PBF
STANDARD OPTION
METRIC
CODE
MIN
MAX
A
330.0
N.C
B
20.2
N.C
C
12.8
13.2
D
1.5
N.C
E
100.0
N.C
F
N.C
18.4
G
12.4
14.4
H
11.9
15.4
REEL DIMENSIONS
(QTY 4800)
TR1 OPTION (QTY 1000)
IMPERIAL
IMPERIAL
METRIC
MAX
MIN
MIN
MAX
MAX
MIN
N.C
6.9
12.992
177.77 N.C
N.C
0.75
0.795
N.C
19.06
N.C
N.C
0.53
0.504
0.50
0.520
13.5
12.8
0.059
0.059
N.C
1.5
N.C
N.C
2.31
3.937
N.C
58.72
N.C
N.C
N.C
N.C
0.53
N.C
0.724
13.50
0.47
0.488
N.C
11.9
0.567
12.01
0.47
0.469
N.C
11.9
0.606
12.01
Loaded Tape Feed Direction
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
METRIC
IMPERIAL
MIN
MIN
MAX
MAX
0.311
7.90
0.319
8.10
0.154
3.90
0.161
4.10
0.469
11.90
0.484
12.30
0.215
5.45
0.219
5.55
0.158
4.00
0.165
4.20
0.197
5.00
0.205
5.20
0.059
1.50
N.C
N.C
0.059
1.50
0.063
1.60
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.05/06
www.irf.com
9
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/