PD - 96978A IRF6611 DirectFET™ Power MOSFET Typical values (unless otherwise specified) Low Profile (<0.7 mm) VDSS VGS RDS(on) RDS(on) Dual Sided Cooling Compatible 30V max ±20V max 2.0mΩ@ 10V 2.6mΩ@ 4.5V Ultra Low Package Inductance Qg tot Qgd Qgs2 Qrr Qoss Vgs(th) Optimized for High Frequency Switching above 1MHz Ideal for CPU Core DC-DC Converters 37nC 12nC 3.3nC 16nC 23nC 1.7V Optimized for SyncFET Socket of Sync. Buck Converter Low Conduction Losses Compatible with Existing Surface Mount Techniques DirectFET™ ISOMETRIC MX Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ SX ST MQ MX MT Description The IRF6611 combines the latest HEXFET® power MOSFET silicon technology with advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%. The IRF6611 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6611 has been optimized for parameters that are critical in synchronous buck operating from 12 volt bus converters including RDS(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6611 offers particularly low RDS(on) and high Cdv/ dt immunity for synchronous FET applications. Absolute Maximum Ratings Parameter VDS Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAR Typical RDS(on) (mΩ) 20 ID = 27A 15 10 T J = 125°C 5 T J = 25°C 0 0 1 2 3 4 5 6 7 8 9 10 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET MOSFETs Repetitive rating; pulse width limited by max. junction temperature. www.irf.com VGS, Gate-to-Source Voltage (V) Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current Max. Units 30 ±20 27 22 150 220 210 22 V A mJ A 6.0 ID= 22A 5.0 VDS= 24V VDS= 15V 4.0 3.0 2.0 1.0 0.0 0 10 20 30 40 50 QG Total Gate Charge (nC) Fig 2. Typical On-Resistance vs. Gate Voltage Starting TJ = 25°C, L = 0.91mH, RG = 25Ω, IAS = 22A. Surface mounted on 1 in. square Cu board, steady state. TC measured with thermocouple mounted to top (Drain) of part. 1 04/18/05 IRF6611 Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Conditions Typ. Max. Units VGS = 0V, ID = 250µA BVDSS Drain-to-Source Breakdown Voltage 30 ––– ––– ∆ΒVDSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient ––– 23 ––– Static Drain-to-Source On-Resistance ––– 2.0 2.6 V mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 27A ––– 2.6 3.4 VGS = 4.5V, ID = 22A VDS = VGS, ID = 250µA VGS(th) Gate Threshold Voltage 1.35 ––– 2.25 V ∆VGS(th)/∆TJ IDSS Gate Threshold Voltage Coefficient ––– -6.7 ––– mV/°C Drain-to-Source Leakage Current ––– ––– 1.0 µA VDS = 24V, VGS = 0V ––– ––– 150 VDS = 24V, VGS = 0V, TJ = 125°C nA VGS = 20V IGSS gfs Qg Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Forward Transconductance 100 ––– ––– VGS = -20V S VDS = 15V, ID = 22A Total Gate Charge ––– 37 56 Qgs1 Pre-Vth Gate-to-Source Charge ––– 9.8 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 3.3 ––– Qgd Gate-to-Drain Charge ––– 12.5 Qgodr ––– 11.4 ––– Qsw Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 15.8 ––– Qoss Output Charge ––– 23 ––– nC RG Gate Resistance ––– ––– 2.3 Ω td(on) Turn-On Delay Time ––– 18 ––– VDD = 16V, VGS = 4.5V tr Rise Time ––– 57 ––– ID = 22A td(off) Turn-Off Delay Time ––– 24 ––– tf Fall Time ––– 6.5 ––– Ciss Input Capacitance ––– 4860 ––– Coss Output Capacitance ––– 1030 ––– Crss Reverse Transfer Capacitance ––– 480 ––– Min. Typ. Max. Units ––– ––– VDS = 15V nC VGS = 4.5V ID = 22A See Fig. 17 ns VDS = 16V, VGS = 0V Clamped Inductive Load VGS = 0V pF VDS = 15V ƒ = 1.0MHz Diode Characteristics Parameter IS Continuous Source Current (Body Diode) ISM Pulsed Source Current A ––– ––– Conditions MOSFET symbol 3.5 showing the 220 integral reverse p-n junction diode. TJ = 25°C, IS = 22A, VGS = 0V (Body Diode) VSD Diode Forward Voltage ––– ––– 1.0 V trr Reverse Recovery Time ––– 24 36 ns TJ = 25°C, IF = 22A Qrr Reverse Recovery Charge ––– 16 24 nC di/dt = 100A/µs Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF6611 Absolute Maximum Ratings Max. Units 2.8 1.8 89 270 -40 to + 150 W Parameter Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG °C Thermal Resistance Parameter RθJA RθJA RθJA RθJC RθJ-PCB Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor Typ. Max. Units ––– 12.5 20 ––– 1.0 45 ––– ––– 1.4 ––– °C/W 0.022 W/°C Thermal Response ( Z thJA ) 100 10 1 D = 0.50 0.20 0.10 0.05 0.02 0.01 τJ 0.1 SINGLE PULSE ( THERMAL RESPONSE ) 0.01 R1 R1 τJ τ1 τ1 R2 R2 τ2 τ2 R3 R3 τ3 τC τ τ3 Ci= τi/Ri Ci τi/Ri Ri (°C/W) τi (sec) 2.575 0.000686 22.547 0.786140 19.884 28 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Surface mounted on 1 in. square Cu board, steady state. Used double sided cooling , mounting pad. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. Surface mounted on 1 in. square Cu board (still air). www.irf.com TC measured with thermocouple incontact with top (Drain) of part. Rθ is measured at TJ of approximately 90°C. Mounted to a PCB with a thin gap filler and heat sink. (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6611 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 100 10 2.5V 2.5V 10 ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 150°C Tj = 25°C 1 0.1 BOTTOM 1 10 1 100 0.1 1000 Fig 4. Typical Output Characteristics 100 1000 1.5 VDS = 15V ≤60µs PULSE WIDTH ID = 27A Typical RDS(on) (Normalized) ID, Drain-to-Source Current (Α) 10 Fig 5. Typical Output Characteristics 1000 100 T J = 25°C T J = -40°C T J = 150°C 10 1 0.1 1.0 V GS = 10V V GS = 4.5V 0.5 1 2 3 4 10 Typical RDS(on) Normalized ( mΩ) VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd 10000 Ciss Coss 1000 20 40 60 80 100 120 140 160 Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics 100000 -60 -40 -20 0 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance(pF) 1 V DS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Crss Vgs = 3.0V Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 10V 8 6 4 2 T J = 25°C 0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 0 20 40 60 80 100 120 140 160 180 200 ID, Drain Current (A) Fig 9. Normalized Typical On-Resistance vs. Drain Current and Gate Voltage www.irf.com IRF6611 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100 10 T J = 150°C 1 T J = 25°C T J = 40°C 10 100µsec 1msec 10msec 1 Ta = 25°C Tj = 150°C Single Pulse VGS = 0V 0.1 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 3.5 0 1 10 100 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) Fig11. Maximum Safe Operating Area Fig 10. Typical Source-Drain Diode Forward Voltage 160 2.0 Limited by package VGS(th) Gate threshold Voltage (V) 140 ID, Drain Current (A) 120 100 80 60 40 20 1.8 1.6 ID = 50µA 1.4 1.2 1.0 0.8 0.6 0.4 0 25 50 75 100 125 -75 150 -50 -25 0 25 50 75 100 125 150 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 13. Threshold Voltage vs. Temperature Fig 12. Maximum Drain Current vs. Case Temperature EAS , Single Pulse Avalanche Energy (mJ) 900 ID 800 TOP 8.7A 11A BOTTOM 22A 700 600 500 400 300 200 100 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF6611 Current Regulator Same Type as D.U.T. Id Vds 50KΩ Vgs .2µF 12V .3µF + V - DS D.U.T. Vgs(th) VGS 3mA IG ID Qgs1 Qgs2 Current Sampling Resistors Fig 15a. Gate Charge Test Circuit Qgd Qgodr Fig 15b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS tp D.U.T V RGSG + V - DD IAS 20V tp A I AS 0.01Ω Fig 16c. Unclamped Inductive Waveforms Fig 16b. Unclamped Inductive Test Circuit LD VDS VDS 90% + VDD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% Fig 17a. Switching Time Test Circuit 6 10% VGS td(on) tr td(off) tf Fig 17b. Switching Time Waveforms www.irf.com IRF6611 D.U.T Driver Gate Drive + - - - RG • • • • * D.U.T. ISD Waveform Reverse Recovery Current + di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + - Re-Applied Voltage Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Body Diode VDD Forward Drop Inductor Current Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET™ Substrate and PCB Layout, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. www.irf.com 7 IRF6611 DirectFET™ Outline Dimension, MX Outline (Medium Size Can, X-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC CODE A B C D E F G H J K L M N P MIN 6.25 4.80 3.85 0.35 0.68 0.68 1.38 0.80 0.38 0.88 2.28 0.59 0.03 0.08 MAX 6.35 5.05 3.95 0.45 0.72 0.72 1.42 0.84 0.42 1.01 2.41 0.70 0.08 0.17 IMPERIAL MAX MAX 0.246 0.250 0.189 0.201 0.152 0.156 0.014 0.018 0.027 0.028 0.027 0.028 0.054 0.056 0.032 0.033 0.015 0.017 0.035 0.039 0.090 0.095 0.023 0.028 0.001 0.003 0.003 0.007 DirectFET™ Part Marking 8 www.irf.com IRF6611 DirectFET™ Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6611). For 1000 parts on 7" reel, order IRF6611TR1 REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL IMPERIAL METRIC METRIC MIN MAX MIN CODE MAX MIN MIN MAX MAX 12.992 N.C 6.9 A N.C 177.77 N.C 330.0 N.C 0.795 0.75 N.C B N.C 19.06 20.2 N.C N.C 0.504 0.53 C 0.50 13.5 12.8 0.520 12.8 13.2 0.059 0.059 D N.C 1.5 1.5 N.C N.C N.C 3.937 2.31 E N.C 58.72 100.0 N.C N.C N.C F N.C N.C 0.53 N.C N.C 0.724 13.50 18.4 G 0.488 0.47 N.C 11.9 12.4 0.567 12.01 14.4 H 0.469 0.47 11.9 11.9 0.606 N.C 12.01 15.4 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.04/05 www.irf.com 9