IRF6674 Data Sheet (250 KB, EN)

PD - 97133
IRF6674TRPbF
DirectFET™ Power MOSFET ‚
Typical values (unless otherwise specified)
RoHS Compliant 
l Lead-Free (Qualified up to 260°C Reflow)
l Application Specific MOSFETs
l Ideal for High Performance Isolated Converter
Primary Switch Socket
l Optimized for Synchronous Rectification
l Low Conduction Losses
l High Cdv/dt Immunity
l Dual Sided Cooling Compatible 
l Compatible with existing Surface Mount Techniques 
l
VDSS
VGS
RDS(on)
60V max ±20V max
Qg
tot
24nC
9.0mΩ@ 10V
Qgd
Vgs(th)
8.3nC
4.0V
DirectFET™ ISOMETRIC
MZ
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SH
SJ
SP
MZ
MN
Description
The IRF6674PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve
the lowest on-state resistance in a package that has the footprint of an Micro8 and only 0.7 mm profile. The DirectFET package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows
dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6674PbF is optimized for primary side sockets in forward and push-pull isolated DC-DC topologies, for 48V and 36V-60V input
voltage range systems. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency
and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance isolated DCDC converters.
Absolute Maximum Ratings
Parameter
VDS
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAS
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
g
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
h
30
TJ = 125°C
10
TJ = 25°C
0
4
6
8
10
12
14
VGS, Gate-to-Source Voltage (V)
16
Fig 1. Typical On-Resistance vs. Gate Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
V
e
e
f
VGS, Gate-to-Source Voltage (V)
Typical R DS (on) (mΩ)
ID = 13.4A
20
Units
60
±20
13.4
10.7
67
134
98
13.4
h
50
40
Max.
A
mJ
A
14
ID= 13.4A
12
VDS = 48V
VDS = 30V
10
8
6
4
2
0
0
10
20
30
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage
„ TC measured with thermocouple mounted to top (Drain) of part.
… Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 0.272mH, RG = 25Ω, IAS = 13.4A.
1
4/24/08
IRF6674TRPbF
Electrical Characteristic @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Typ.
Max.
Conditions
Units
VGS = 0V, ID = 250μA
BVDSS
Drain-to-Source Breakdown Voltage
60
–––
–––
V
ΔΒVDSS/ΔTJ
Breakdown Voltage Temp. Coefficient
–––
0.07
–––
V/°C
Reference to 25°C, ID = 1mA
RDS(on)
Static Drain-to-Source On-Resistance
–––
9.0
11
mΩ
VGS = 10V, ID = 13.4A i
VGS(th)
Gate Threshold Voltage
3.0
4.0
4.9
V
ΔVGS(th)/ΔTJ
Gate Threshold Voltage Coefficient
–––
-11
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
–––
–––
20
μA
VDS = 60V, VGS = 0V
–––
–––
250
IGSS
Gate-to-Source Forward Leakage
–––
–––
100
nA
VGS = 20V
Gate-to-Source Reverse Leakage
–––
–––
-100
Forward Transconductance
16
–––
–––
gfs
Qg
Total Gate Charge
–––
24
36
Qgs1
Pre-Vth Gate-to-Source Charge
–––
5.4
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
1.9
–––
VDS = VGS, ID = 100μA
VDS = 48V, VGS = 0V, TJ = 125°C
VGS = -20V
S
VDS = 25V, ID = 13.4A
VDS = 30V
nC
VGS = 10V
Qgd
Gate-to-Drain Charge
–––
8.3
12
ID = 13.4A
Qgodr
–––
8.4
–––
See Fig. 15
Qsw
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
10.2
–––
Qoss
Output Charge
–––
14
–––
nC
RG
Gate Resistance
–––
1.0
–––
Ω
td(on)
Turn-On Delay Time
–––
7.0
–––
VDD = 30V, VGS = 10Vi
tr
Rise Time
–––
12
–––
ID = 13.4A
td(off)
Turn-Off Delay Time
–––
12
–––
tf
Fall Time
–––
8.7
–––
Ciss
Input Capacitance
–––
1350
–––
Coss
Output Capacitance
–––
390
–––
Crss
Reverse Transfer Capacitance
–––
105
–––
Coss
Output Capacitance
–––
1580
–––
ƒ = 1.0MHz
VGS = 0V, VDS = 1.0V, f=1.0MHz
Coss
Output Capacitance
–––
290
–––
VGS = 0V, VDS = 48V, f=1.0MHz
Min.
Typ.
Max.
ns
VDS = 16V, VGS = 0V
RG = 6.2 Ω
VGS = 0V
pF
VDS = 25V
Diode Characteristics
Parameter
IS
ISM
Continuous Source Current
(Body Diode) TJ= 25°C
–––
Pulsed Source Current
–––
–––
Units
67
A
–––
Conditions
MOSFET symbol
integral reverse
134
(Body Diode)g
D
showing the
G
S
p-n junction diode.
TJ = 25°C, IS = 13.4A, VGS = 0V i
VSD
Diode Forward Voltage
–––
–––
1.3
V
trr
Reverse Recovery Time
–––
32
48
ns
TJ = 25°C, IF = 13.4A, VDD = 50V
Qrr
Reverse Recovery Charge
–––
36
54
nC
di/dt = 100A/μs c
Notes:
… Repetitive rating; pulse width limited by max. junction temperature.
‡ Pulse width ≤ 400μs; duty cycle ≤ 2%.
2
www.irf.com
IRF6674TRPbF
Absolute Maximum Ratings
e
e
f
Max.
Units
3.6
2.3
89
270
-40 to + 150
W
Parameter
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
°C
Thermal Resistance
Parameter
el
jl
kl
fl
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Typ.
Max.
Units
–––
12.5
20
–––
1.0
35
–––
–––
1.4
–––
°C/W
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.05
0.1
τJ
0.02
0.01
0.01
R1
R1
τJ
τ1
R2
R2
τ1
τ2
τ2
1E-005
τ3
τ3
τ4
τ4
τ
Ri (°C/W)
0.023002
0.269754
0.770575
0.337715
τι (sec)
0.000008
0.000072
0.001409
0.005778
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = Pdm x Zthjc + Tc
0.001
1E-006
R4
R4
τC
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
R3
R3
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Case 
Notes:
‰ Mounted on minimum footprint full size board with metalized
ƒ Surface mounted on 1 in. square Cu board, steady state.
„ TC measured with thermocouple incontact with top (Drain) of part. back and with small clip heatsink.
Š Rθ is measured at TJ of approximately 90°C.
ˆ Used double sided cooling, mounting pad with large heatsink.
ƒ Surface mounted on 1 in. square Cu
board (still air).
www.irf.com
‰ Mounted on minimum footprint full size board with metalized
back and with small clip heatsink. (still air)
3
IRF6674TRPbF
100
TOP
BOTTOM
10
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
100
VGS
15V
10V
8.0V
7.0V
6.0V
6.0V
6.0V
10
TOP
BOTTOM
≤60μs PULSE WIDTH
≤60μs PULSE WIDTH
Tj = 150°C
Tj = 25°C
1
1
0.1
1
10
0.1
VDS , Drain-to-Source Voltage (V)
2.0
ID = 13.4A
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current(Α)
10
Fig 5. Typical Output Characteristics
1000
100
TJ = 150°C
TJ = 25°C
TJ = -40°C
10
1
VDS = 10V
VGS = 10V
1.5
1.0
≤60μs PULSE WIDTH
0.1
2.0
4.0
6.0
8.0
10.0
0.5
12.0
-60 -40 -20 0
VGS, Gate-to-Source Voltage (V)
Fig 6. Typical Transfer Characteristics
100000
Fig 7. Normalized On-Resistance vs. Temperature
(Normalized)
DS(on)
Ciss
Typical R
Coss
Crss
100
TJ , Junction Temperature (°C)
TA= 25°C
Coss = Cds + Cgd
1000
20 40 60 80 100 120 140 160
50
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
10000
C, Capacitance(pF)
1
VDS , Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
40
VGS = 7.0V
VGS = 8.0V
30
VGS = 10V
VGS = 15V
20
10
0
10
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
VGS
15V
10V
8.0V
7.0V
6.0V
0
20
40
60
80
100
ID, Drain Current (A)
Fig 9. Typical On-Resistance vs. Drain Current
www.irf.com
IRF6674TRPbF
1000
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
1000
100
TJ = 150°C
TJ = 25°C
10
TJ = -40°C
1
OPERATION IN THIS AREA
LIMITED BY R DS (on)
100
100μsec
10
1msec
1
VGS = 0V
0.1
0
0.2
0.4
0.6
0.8
1.0
1.2
0.1
1.4
1
10
100
VDS , Drain-toSource Voltage (V)
VSD , Source-to-Drain Voltage (V)
Fig11. Maximum Safe Operating Area
Fig 10. Typical Source-Drain Diode Forward Voltage
5.0
VGS(th) Gate threshold Voltage (V)
14
12
ID , Drain Current (A)
10msec
TC = 25°C
Tj = 150°C
Single Pulse
10
8
6
4
2
4.5
4.0
3.5
ID = 250μA
ID = 100μA
3.0
2.5
0
2.0
25
50
75
100
125
150
-75
-50
-25
TJ , Ambient Temperature (°C)
0
25
50
75
100
125
150
TJ , Temperature ( °C )
Fig 13. Typical Threshold Voltage vs.
Junction Temperature
Fig 12. Maximum Drain Current vs. Ambient Temperature
EAS, Single Pulse Avalanche Energy (mJ)
400
ID
4.5A
9.3A
BOTTOM 26.8A
TOP
300
200
100
0
25
50
75
100
125
150
Starting TJ, Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy vs. Drain Current
www.irf.com
5
IRF6674TRPbF
Id
Vds
Vgs
L
VCC
DUT
0
20K
1K
Vgs(th)
S
Qgodr
Fig 15a. Gate Charge Test Circuit
Qgd
Qgs2 Qgs1
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
V
RGSG
+
V
- DD
IAS
20V
A
I AS
0.01Ω
tp
Fig 16b. Unclamped Inductive Waveforms
Fig 16a. Unclamped Inductive Test Circuit
VDS
VGS
RG
RD
VDS
90%
D.U.T.
+
- VDD
V10V
GS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 17a. Switching Time Test Circuit
6
10%
VGS
td(on)
tr
t d(off)
tf
Fig 17b. Switching Time Waveforms
www.irf.com
IRF6674TRPbF
Driver Gate Drive
D.U.T
ƒ
+
-
-
RG
*
•
•
•
•
„
D.U.T. ISD Waveform
Reverse
Recovery
Current
VDD
**
P.W.
Period
***
+
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
‚

Period
P.W.
+
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
* Use P-Channel Driver for P-Channel Measurements
** Reverse Polarity for P-Channel
ISD
*** VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, MZ Outline
(Medium Size Can, Z-Designation).
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations
G=GATE
D=DRAIN
S=SOURCE
D
D
S
G
S
D
D
Note: For the most current drawing please refer to IR website at http://www.irf.com/package
www.irf.com
7
IRF6674TRPbF
DirectFET™ Outline Dimension, MZ Outline
(Medium Size Can, Z-Designation).
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations
DIMENSIONS
CODE
A
B
C
D
E
F
G
H
J
K
L
M
N
P
METRIC
MIN MAX
6.25 6.35
4.80 5.05
3.85 3.95
0.35 0.45
0.68 0.72
0.68 0.72
0.93 0.97
0.63 0.67
0.28 0.32
1.13 1.26
2.53 2.66
0.59 0.70
0.03 0.08
0.08 0.17
IMPERIAL
MIN
MAX
0.246
0.250
0.189
0.201
0.152
0.156
0.014
0.018
0.027
0.028
0.027
0.028
0.037
0.038
0.025
0.026
0.011
0.013
0.044
0.050
0.100
0.105
0.023
0.028
0.001
0.003
0.003
0.007
DirectFET™ Part Marking
GATE MARKING
LOGO
PART NUMBER
BATCH NUMBER
DATE CODE
Line above the last character of
the date code indicates "Lead-Free"
Note: For the most current drawing please refer to IR website at http://www.irf.com/package
8
www.irf.com
IRF6674TRPbF
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6674MTRPBF). For 1000 parts on 7"
reel, order IRF6674MTR1PBF
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
TR1 OPTION (QTY 1000)
IMPERIAL
IMPERIAL
METRIC
METRIC
MIN
MAX
MIN
CODE
MAX
MIN
MAX
MIN
MAX
6.9
N.C
12.992
A
330.0
N.C
177.77
N.C
N.C
0.75
0.795
B
N.C
20.2
N.C
19.06
N.C
N.C
0.53
0.504
C
0.50
12.8
0.520
13.5
13.2
12.8
0.059
0.059
D
N.C
1.5
1.5
N.C
N.C
N.C
2.31
3.937
E
N.C
100.0
58.72
N.C
N.C
N.C
N.C
N.C
F
0.53
N.C
N.C
0.724
18.4
13.50
G
0.47
0.488
N.C
12.4
11.9
0.567
14.4
12.01
H
0.47
0.469
11.9
11.9
N.C
0.606
15.4
12.01
LOADED TAPE FEED DIRECTION
NOTE: CONTROLLING
DIMENSIONS IN MM
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
IMPERIAL
METRIC
MIN
MAX
MIN
MAX
0.311
0.319
7.90
8.10
0.154
0.161
3.90
4.10
0.469
0.484
11.90
12.30
0.215
0.219
5.45
5.55
0.201
0.209
5.10
5.30
0.256
0.264
6.50
6.70
0.059
N.C
1.50
N.C
0.059
0.063
1.50
1.60
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.4/08
www.irf.com
9