IRF7749L1 Data Sheet (270 KB, EN)

IRF7749L1TRPbF
Applications
l RoHS Compliant, Halogen Free ‚
l Lead-Free (Qualified up to 260°C Reflow) 
l Ideal for High Performance Isolated Converter
Primary Switch Socket
l Optimized for Synchronous Rectification
l Low Conduction Losses
l High Cdv/dt Immunity
l Low Profile (<0.7mm)
l Dual Sided Cooling Compatible 
l Compatible with existing Surface Mount Techniques 
l Industrial Qualified
DirectFET™ Power MOSFET ‚
Typical values (unless otherwise specified)
SC
VGS
RDS(on)
60V min
±20V max
1.1mΩ@ 10V
tot
Qgd
Vgs(th)
200nC
71nC
2.9V
Qg
G
D
S
S
S
S
S
S
S
S
D
DirectFET™ ISOMETRIC
L8
Applicable DirectFET Outline and Substrate Outline 
SB
VDSS
M2
M4
L4
L6
L8
Description
The IRF7749L1TRPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the
lowest on-state resistance in a package that has a footprint smaller than a D2PAK and only 0.7 mm profile. The DirectFET package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques,
when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling
to maximize thermal transfer in power systems.
The IRF7749L1TRPbF is optimized for high frequency switching and synchronous rectification applications. The reduced total losses in the device
coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements,
and makes this device ideal for high performance power converters.
Ordering Information
Base part number
IRF7749L1TRPbF
Standard Pack
Package Type
Form
Tape and Reel
DirectFET Large Can
Orderable Part Number
Quantity
4000
IRF7749L1TRPbF
Absolute Maximum Ratings
Parameter
VDS
VGS
ID @ TC = 25°C
ID @ TC = 100°C
ID @ TA = 25°C
ID @ TC = 25°C
IDM
EAS
IAR
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V (Silicon Limited)f
Continuous Drain Current, VGS @ 10V (Silicon Limited)f
Continuous Drain Current, VGS @ 10V (Silicon Limited)e
Continuous Drain Current, VGS @ 10V (Package Limited) f
g
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
g
h
V
A
mJ
A
8.0
6.0
TJ = 25°C
4.0
TJ = 125°C
2.0
VGS = 6.0V
VGS = 8.0V
TC= 25°C
(
DS(on) mΩ)
10.0
1.40
VGS = 10V
VGS = 14V
1.20
1.00
0.80
0.0
4.0
Notes:
Units
60
±20
200
140
33
375
800
260
120
1.60
ID = 120A
Typical R
Typical R DS(on), (mΩ)
12.0
Max.
6.0
8.0
10.0 12.0 14.0
VGS, Gate-to-Source Voltage (V)
16.0
Fig 1. Typical On-Resistance vs. Gate Voltage
 Click on this section to link to the appropriate technical paper.
40
80
120
160
200
ID, Drain Current (A)
Fig 2. Typical On-Resistance vs. Drain Current
„ TC measured with thermocouple mounted to top (Drain) of part.
‚ Click on this section to link to the DirectFET Website.
… Repetitive rating; pulse width limited by max. junction temperature.
ƒ Surface mounted on 1 in. square Cu board, steady state.
† Starting TJ = 25°C, L = 0.035mH, RG = 25Ω, IAS = 120A.
1
www.irf.com
© 2012 International Rectifier
February 18, 2013
IRF7749L1TRPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
BVDSS
Drain-to-Source Breakdown Voltage
Min.
60
Conditions
Typ. Max. Units
–––
–––
V
VGS = 0V, ID = 250μA
ΔΒVDSS/ΔTJ
Breakdown Voltage Temp. Coefficient
–––
0.03
–––
RDS(on)
Static Drain-to-Source On-Resistance
–––
1.1
1.50
V/°C Reference to 25°C, ID = 2mA
mΩ VGS = 10V, ID = 120A
VDS = VGS, ID = 250μA
i
VGS(th)
Gate Threshold Voltage
2.0
2.9
4.0
V
ΔVGS(th)/ΔTJ
IDSS
Gate Threshold Voltage Coefficient
–––
-10
–––
mV/°C
Drain-to-Source Leakage Current
–––
–––
20
μA
VDS = 60V, VGS = 0V
–––
–––
250
VDS = 48V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
IGSS
gfs
Qg
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
Forward Transconductance
280
–––
–––
Total Gate Charge
–––
200
300
Qgs1
Pre-Vth Gate-to-Source Charge
–––
36
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
12
–––
VGS = -20V
S
VDS = 10V, ID = 120A
VDS = 30V
nC
VGS = 10V
Qgd
Gate-to-Drain Charge
–––
71
110
ID = 120A
Qgodr
–––
100
–––
See Fig. 9
Qsw
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
83
–––
Qoss
Output Charge
–––
67
–––
nC
RG
Gate Resistance
–––
1.1
–––
Ω
td(on)
Turn-On Delay Time
–––
17
–––
VDD = 30V, VGS = 10V
ID = 120A
VDS = 16V, VGS = 0V
i
tr
Rise Time
–––
43
–––
td(off)
Turn-Off Delay Time
–––
78
–––
tf
Fall Time
–––
39
–––
Ciss
Input Capacitance
–––
12320
–––
Coss
Output Capacitance
–––
1810
–––
Crss
Reverse Transfer Capacitance
–––
850
–––
Coss
Output Capacitance
–––
8060
–––
ƒ = 1.0MHz
VGS = 0V, VDS = 1.0V, f=1.0MHz
Coss
Output Capacitance
–––
1310
–––
VGS = 0V, VDS = 120V, f=1.0MHz
Min.
Typ. Max. Units
ns
RG=1.8Ω
VGS = 0V
pF
VDS = 25V
Diode Characteristics
Parameter
IS
Continuous Source Current
–––
–––
200
(Body Diode)
ISM
A
Pulsed Source Current
g
–––
–––
Conditions
MOSFET symbol
showing the
800
integral reverse
VSD
Diode Forward Voltage
–––
–––
1.3
V
p-n junction diode.
TJ = 25°C, IS = 120A, VGS = 0V
trr
Reverse Recovery Time
–––
45
68
ns
TJ = 25°C, IF = 120A, VDD = 30V
Qrr
Reverse Recovery Charge
–––
78
120
nC
di/dt = 100A/μs
(Body Diode)
i
i
Notes:
… Repetitive rating; pulse width limited by max. junction temperature.
‡ Pulse width ≤ 400μs; duty cycle ≤ 2%.
2
www.irf.com
© 2012 International Rectifier
February 18, 2013
IRF7749L1TRPbF
Absolute Maximum Ratings
f
Power Dissipation f
Power Dissipation c
Parameter
Power Dissipation
P D @TC = 25°C
P D @TC = 100°C
P D @TA = 25°C
Max.
Units
125
W
63
3.3
TP
Peak Soldering Temperature
TJ
Operating Junction and
TSTG
Storage Temperature Range
°C
270
-55 to + 175
Thermal Resistance
e
Junction-to-Ambient j
Junction-to-Ambient k
Junction-to-Can fl
RθJA
Parameter
Junction-to-Ambient
RθJA
RθJA
RθJ-Can
Junction-to-PCB Mounted
RθJ-PCB
Typ.
Max.
–––
45
12.5
–––
20
–––
–––
1.2
–––
0.4
Units
°C/W
Thermal Response ( ZthJC ) °C/W
10
1
D = 0.50
0.20
0.10
0.05
0.1
0.02
0.01
0.01
τJ
0.0001
1E-006
1E-005
τJ
τ1
R2
R2
R3
R3
Ri (°C/W)
R4
R4
τC
τ
τ2
τ1
τ2
τ3
τ4
τ3
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.001
R1
R1
τ4
τi (sec)
0.10804
0.000171
0.61403
0.053914
0.45202
0.006099
0.00001
0.036168
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Case „
Notes:
‰ Mounted on minimum footprint full size board with metalized
ƒ Surface mounted on 1 in. square Cu board, steady state.
„ TC measured with thermocouple incontact with top (Drain) of part. back and with small clip heatsink.
Š Rθ is measured at TJ of approximately 90°C.
ˆ Used double sided cooling, mounting pad with large heatsink.
ƒ Surface mounted on 1 in. square Cu
board (still air).
3
www.irf.com
‰ Mounted on minimum footprint full size board with metalized
back and with small clip heatsink. (still air)
© 2012 International Rectifier
February 18, 2013
IRF7749L1TRPbF
1000
1000
VGS
15V
10V
7.0V
5.0V
4.5V
4.3V
4.0V
3.8V
100
BOTTOM
10
≤ 60μs PULSE WIDTH
Tj = 25°C
1
3.8V
BOTTOM
100
3.8V
≤ 60μs PULSE WIDTH
Tj = 175°C
0.1
10
0.1
1
10
100
0.1
VDS, Drain-to-Source Voltage (V)
100
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
100
TJ = 175°C
TJ = 25°C
TJ = -40°C
10
1
VDS = 25V
≤ 60μs PULSE WIDTH
0.1
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
ID = 120A
VGS = 10V
1.5
1.0
0.5
6.5
-60 -40 -20 0
VGS, Gate-to-Source Voltage (V)
100000
Fig 7. Normalized On-Resistance vs. Temperature
14
VGS, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Ciss
10000
Coss
1000
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 6. Typical Transfer Characteristics
C, Capacitance (pF)
10
Fig 5. Typical Output Characteristics
1000
ID, Drain-to-Source Current (A)
1
VDS, Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
Crss
ID= 120A
12
VDS= 48V
VDS= 30V
10
VDS= 12V
8
6
4
2
0
100
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
VGS
15V
10V
7.0V
5.0V
4.5V
4.3V
4.0V
3.8V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
www.irf.com
© 2012 International Rectifier
0
40
80
120
160
200
240
280
QG Total Gate Charge (nC)
Fig 9. Typical Total Gate Charge vs
Gate-to-Source Voltage
February 18, 2013
IRF7749L1TRPbF
10000
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
1000
100
TJ = 175°C
TJ = 25°C
TJ = -40°C
10
VGS = 0V
0.4
0.6
0.8
1.0
1.2
1000
100μsec
100
1msec
DC
10
10msec
1
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
1
0.2
OPERATION IN THIS AREA
LIMITED BY R DS(on)
0
1.4
1
VSD, Source-to-Drain Voltage (V)
Fig 10. Typical Source-Drain Diode Forward Voltage
100
Fig11. Maximum Safe Operating Area
4.5
VGS(th) Gate threshold Voltage (V)
200
160
ID , Drain Current (A)
10
VDS , Drain-toSource Voltage (V)
120
80
40
0
4.0
ID = 1.0A
3.5
ID = 250μA
ID = 1.0mA
3.0
2.5
2.0
1.5
1.0
25
50
75
100
125
150
175
-75 -50 -25
TC , CaseTemperature (°C)
25
50
75
100 125 150 175
TJ , Temperature ( °C )
Fig 13. Typical Threshold Voltage vs.
Junction Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
EAS, Single Pulse Avalanche Energy (mJ)
0
1200
I D
20A
31A
BOTTOM 120A
TOP
1000
800
600
400
200
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy Vs. Drain Current
5
www.irf.com
© 2012 International Rectifier
February 18, 2013
IRF7749L1TRPbF
1000
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 150°C and
Tstart =25°C (Single Pulse)
Duty Cycle = Single Pulse
Avalanche Current (A)
100
0.01
0.05
10
0.10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤ j = 25°C and
Tstart = 150°C.
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 )
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 19a, 19b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
EAR , Avalanche Energy (mJ)
280
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 120A
240
200
160
120
80
40
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·ta
Fig 16. Maximum Avalanche Energy Vs. Temperature
Driver Gate Drive
D.U.T
+
ƒ
+
‚
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
di/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
+
Re-Applied
Voltage
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs
6
www.irf.com
© 2012 International Rectifier
February 18, 2013
IRF7749L1TRPbF
Id
Vds
Vgs
L
VCC
DUT
0
20K
1K
Vgs(th)
S
Qgodr
Fig 18a. Gate Charge Test Circuit
Qgd
Qgs2 Qgs1
Fig 18b. Gate Charge Waveform
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
V
RGSG
+
- VDD
IAS
20V
A
I AS
0.01Ω
tp
Fig 19b. Unclamped Inductive Waveforms
Fig 19a. Unclamped Inductive Test Circuit
VDS
V GS
RG
RD
VDS
90%
D.U.T.
+
- VDD
V10V
GS
10%
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
td(on)
Fig 20a. Switching Time Test Circuit
7
www.irf.com
© 2012 International Rectifier
tr
t d(off)
tf
Fig 20b. Switching Time Waveforms
February 18, 2013
IRF7749L1TRPbF
DirectFET™ Board Footprint, L8 (Large Size Can).
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations
G = GATE
D = DRAIN
S = SOURCE
D
D
D
S
S
S
S
S
S
S
S
G
D
D
D
Note: For the most current drawing please refer to IR website at http://www.irf.com/package
8
www.irf.com
© 2012 International Rectifier
February 18, 2013
IRF7749L1TRPbF
DirectFET™ Outline Dimension, L8 Outline (LargeSize Can).
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations
DIMENSIONS
METRIC
CODE MIN MAX
9.05 9.15
A
6.85 7.10
B
5.90 6.00
C
D
0.55 0.65
E
0.58 0.62
F
1.18 1.22
0.98 1.02
G
0.73 0.77
H
J
0.38 0.42
K
1.35 1.45
2.55 2.65
L
L1
5.35 5.45
M
0.68 0.74
P
0.09 0.17
R
0.02 0.08
IMPERIAL
MAX
MIN
0.356 0.360
0.270 0.280
0.232 0.236
0.022 0.026
0.023 0.024
0.046 0.048
0.039 0.040
0.029 0.030
0.015 0.017
0.053 0.057
0.100 0.104
0.211 0.215
0.027 0.029
0.003 0.007
0.001 0.003
DirectFET™ Part Marking
GATE MARKING
+
LOGO
PART NUMBER
BATCH NUMBER
DATE CODE
Line above the last character of
the date code indicates "Lead-Free"
Note: For the most current drawing please refer to IR website at http://www.irf.com/package
9
www.irf.com
© 2012 International Rectifier
February 18, 2013
IRF7749L1TRPbF
DirectFET™ Tape & Reel Dimension (Showing component orientation).
LOADED TAPE FEED DIRECTION
+
NOTE:
Controlling dimensions in mm
Std reel quantity is 4000 parts. (ordered as IRF7749L1TRPBF).
REEL DIMENSIONS
STANDARD OPTION (QTY 4000)
METRIC
IMPERIAL
MIN
CODE
MAX
MAX
MIN
12.992
A
N.C
330.00
N.C
0.795
B
N.C
20.20
N.C
0.504
C
12.80
13.20
0.520
0.059
D
N.C
1.50
N.C
E
3.900
3.940
99.00
100.00
N.C
F
0.880
N.C
22.40
0.650
G
16.40
18.40
0.720
0.630
H
15.90
19.40
0.760
NOTE: CONTROLLING
DIMENSIONS IN MM
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
IMPERIAL
METRIC
MIN
MAX
MIN
MAX
4.69
0.476
12.10
11.90
0.154
3.90
0.161
4.10
0.623
16.30
15.90
0.642
0.291
0.299
7.60
7.40
0.283
7.20
0.291
7.40
0.390
10.10
9.90
0.398
0.059
N.C
1.50
N.C
0.059
1.50
0.063
1.60
Note: For the most current drawing please refer to IR website at http://www.irf.com/package
Qualification Information
†
Industrial †† *
Qualification level
Moisture Sensitivity Level
MSL1
DirectFET
(per JEDEC J-STD-020D†††)
RoHS Compliant
Yes
† Qualification standards can be found at International Rectifier’s web site
http://www.irf.com/product-info/reliability
†† Higher qualification ratings may be available should the user have such requirements.
Please contact your International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
Applicable version of JEDEC standard at the time of product release.
†††
* Industrial qualification standards except autoclave test conditions.
Revision History
Date
Comments
2/13/2013
TR1 option removed and Tape & Reel Info updated accordingly. Hyperlinks added throw-out the document
IR WORLD HEADQUARTERS: 101N Sepulveda Blvd, El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
10
www.irf.com
© 2012 International Rectifier
February 18, 2013