IRF7739L1 Data Sheet (272 KB, EN)

IRF7739L1TRPbF
Applications
l RoHS Compliant, Halogen Free ‚
l Lead-Free (Qualified up to 260°C Reflow)
l Ideal for High Performance Isolated Converter
Primary Switch Socket
l Optimized for Synchronous Rectification
l Low Conduction Losses
l High Cdv/dt Immunity
l Low Profile (<0.7mm)
l Dual Sided Cooling Compatible 
l Compatible with existing Surface Mount Techniques
l Industrial Qualified
DirectFET™ Power MOSFET ‚
Typical values (unless otherwise specified)
VDSS
40V min
Qg
SC
Vgs(th)
220nC
81nC
2.8V
S

G
±20V max 0.70mΩ@ 10V
Qgd
S
D
S
S
S
S
D
S
DirectFET™ ISOMETRIC
L8
M2
M4
RDS(on)
tot
S
Applicable DirectFET Outline and Substrate Outline 
SB
VGS
L4
L6
L8
Description
The IRF7739L1TRPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET TM packaging to achieve
the lowest on-state resistance in a package that has a footprint smaller than a D2PAK and only 0.7 mm profile. The DirectFET package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques,
when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling
to maximize thermal transfer in power systems.
The IRF7739L1TRPbF is optimized for high frequency switching and synchronous rectification applications. The reduced total losses in the
device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability
improvements, and makes this device ideal for high performance power converters.
Ordering Information
Base part number
Standard Pack
Package Type
IRF7739L1TRPbF
Form
Tape and Reel
DirectFET Large Can
Orderable Part Number
Quantity
4000
Absolute Maximum Ratings
Parameter
VDS
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V (Silicon Limited)f
Continuous Drain Current, VGS @ 10V (Silicon Limited)f
Continuous Drain Current, VGS @ 10V (Silicon Limited)e
Continuous Drain Current, VGS @ 10V (Package Limited) f
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
VGS
ID @ TC = 25°C
ID @ TC = 100°C
ID @ TA = 25°C
ID @ TC = 25°C
IDM
EAS
IAR
g
10
8
T J = 25°C
6
4
T J = 125°C
2
0
Units
40
±20
270
190
46
375
1070
270
160
V
A
mJ
A
VGS = 10V
0.92
0.91
0.90
0.89
0.88
0.87
0.86
0.85
5.0
Notes:
Max.
0.93
ID = 160A
Typical RDS (on) (mΩ)
Typical RDS(on) (mΩ)
h
g
IRF7739L1TRPbF
5.5
6.0
6.5
7.0
7.5
8.0
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
 Click on the hyperlink (to the relevant technical document) for more details.
0
40
80
120
160
200
ID , Drain Current (A)
Fig 2. Typical On-Resistance vs. Drain Current
‚ Click on the hyperlink (to the DirectFET website) for more details
„ TC measured with thermocouple mounted to top (Drain) of part.
… Repetitive rating; pulse width limited by max. junction temperature.
ƒ Surface mounted on 1 in. square Cu board, steady state.
† Starting TJ = 25°C, L = 0.021mH, RG = 25Ω, IAS = 160A.
1
www.irf.com
© 2012 International Rectifier
February 13 ,2013
IRF7739L1TRPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
VGS = 0V, ID = 250μA
V/°C Reference to 25°C, ID = 1.0mA
mΩ VGS = 10V, ID = 160A
VDS = VGS, ID = 250μA
V
Drain-to-Source Breakdown Voltage
40
–––
–––
ΔΒVDSS/ΔTJ
RDS(on)
VGS(th)
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
–––
–––
0.008
0.70
–––
1.0
ΔVGS(th)/ΔTJ
IDSS
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
2.0
–––
–––
2.8
-6.7
–––
4.0
–––
20
IGSS
Gate-to-Source Forward Leakage
–––
–––
–––
–––
250
100
Gate-to-Source Reverse Leakage
Forward Transconductance
–––
280
–––
–––
-100
–––
Total Gate Charge
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
–––
–––
–––
220
46
19
330
–––
–––
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
–––
81
74
120
–––
Output Charge
–––
–––
100
83
–––
–––
Gate Resistance
Turn-On Delay Time
Rise Time
–––
1.5
21
71
–––
–––
–––
Ω
–––
–––
Turn-Off Delay Time
Fall Time
–––
–––
56
42
–––
–––
ns
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
–––
–––
–––
11880
2510
1240
–––
–––
–––
Output Capacitance
Output Capacitance
–––
–––
8610
2230
–––
–––
Min.
Typ. Max. Units
–––
–––
110
–––
–––
1070
gfs
Qg
Qgs1
Qgs2
Qgd
Qgodr
Qsw
Qoss
RG
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss
Coss
Conditions
Typ. Max. Units
BVDSS
V
i
mV/°C
μA VDS = 40V, VGS = 0V
VDS = 32V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
S
VDS = 10V, ID = 160A
VDS = 20V
nC
VGS = 10V
ID = 160A
See Fig. 9
nC
VDS = 16V, VGS = 0V
VDD = 20V, VGS = 10V
ID = 160A
i
RG=1.8Ω
VGS = 0V
pF
VDS = 25V
ƒ = 1.0MHz
VGS = 0V, VDS = 1.0V, f=1.0MHz
VGS = 0V, VDS = 32V, f=1.0MHz
Diode Characteristics
Parameter
IS
ISM
VSD
trr
Qrr
Continuous Source Current
(Body Diode)
Pulsed Source Current
g
Conditions
A
MOSFET symbol
showing the
integral reverse
p-n junction diode.
TJ = 25°C, IS = 160A, VGS = 0V
TJ = 25°C, IF = 160A, VDD = 20V
(Body Diode)
Diode Forward Voltage
–––
–––
1.3
V
Reverse Recovery Time
Reverse Recovery Charge
–––
–––
87
250
130
380
ns
nC
i
di/dt = 100A/μs
i
Notes:
… Repetitive rating; pulse width limited by max. junction temperature.
‡ Pulse width ≤ 400μs; duty cycle ≤ 2%.
2
www.irf.com
© 2012 International Rectifier
February 13 ,2013
IRF7739L1TRPbF
Absolute Maximum Ratings
f
f
c
PD @TC = 25°C
PD @TC = 100°C
PD @TA = 25°C
TP
TJ
TSTG
Parameter
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
Max.
Units
125
63
3.8
270
-55 to + 175
W
°C
Thermal Resistance
e
j
k
Parameter
Typ.
–––
12.5
20
–––
–––
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Can
Junction-to-PCB Mounted
RθJA
RθJA
RθJA
RθJ-Can
RθJ-PCB
fl
Max.
40
–––
–––
1.2
0.4
Units
°C/W
Thermal Response ( Z thJC ) °C/W
10
1
D = 0.50
0.20
0.10
0.05
0.1
0.02
0.01
0.01
τJ
R1
R1
τJ
τ1
0.0001
1E-006
1E-005
R3
R3
0.0001
Ri (°C/W)
R4
R4
τC
τ
τ2
τ1
τ2
τ3
τ3
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.001
R2
R2
0.001
τ4
τ4
τi (sec)
0.1080
0.000171
0.6140
0.053914
0.4520
0.006099
1.47e-05
0.036168
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Case „
Notes:
‰ Mounted on minimum footprint full size board with metalized
ƒ Surface mounted on 1 in. square Cu board, steady state.
„ TC measured with thermocouple incontact with top (Drain) of part. back and with small clip heatsink.
Š Rθ is measured at TJ of approximately 90°C.
ˆ Used double sided cooling, mounting pad with large heatsink.
ƒ Surface mounted on 1 in. square Cu
board (still air).
3
www.irf.com
‰ Mounted on minimum footprint full size board with metalized
back and with small clip heatsink. (still air)
© 2012 International Rectifier
February 13 ,2013
IRF7739L1TRPbF
1000
1000
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
10
BOTTOM
100
≤60μs PULSE WIDTH
1
Tj = 25°C
≤60μs PULSE WIDTH
Tj = 175°C
4.5V
4.5V
0.1
10
0.1
1
10
100
1000
0.1
V DS, Drain-to-Source Voltage (V)
100
1000
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
10
Fig 5. Typical Output Characteristics
1000
100
T J = 175°C
T J = 25°C
10
1
VDS = 25V
≤60μs PULSE WIDTH
0.1
2
3
4
5
6
7
ID = 160A
VGS = 10V
1.5
1.0
0.5
8
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 6. Typical Transfer Characteristics
100000
Fig 7. Normalized On-Resistance vs. Temperature
14.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
ID= 160A
VGS, Gate-to-Source Voltage (V)
C rss = C gd
C oss = C ds + C gd
C, Capacitance (pF)
1
V DS, Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
Ciss
10000
Coss
Crss
1000
12.0
VDS= 32V
VDS= 20V
10.0
8.0
6.0
4.0
2.0
0.0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs. Drain-to-Source Voltage
4
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
www.irf.com
© 2012 International Rectifier
0
50
100
150
200
250
300
QG, Total Gate Charge (nC)
Fig 9. Typical Total Gate Charge vs.
Gate-to-Source Voltage
February 13 ,2013
IRF7739L1TRPbF
10000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
TJ = 175°C
100
T J = 25°C
10
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
100μsec
100
1msec
DC
10
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
1
1.0
0.0
0.5
1.0
1.5
2.0
2.5
0
3.0
1
10
100
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
Fig 10. Typical Source-Drain Diode Forward Voltage
Fig11. Maximum Safe Operating Area
5.0
VGS(th), Gate threshold Voltage (V)
300
250
ID, Drain Current (A)
10msec
200
150
100
50
0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
ID = 250μA
ID = 1.0mA
ID = 1.0A
1.0
25
50
75
100
125
150
175
-75 -50 -25 0
25 50 75 100 125 150 175 200
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 13. Typical Threshold Voltage vs.
Junction Temperature
EAS , Single Pulse Avalanche Energy (mJ)
1100
ID
29A
46A
BOTTOM 160A
1000
TOP
900
800
700
600
500
400
300
200
100
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy vs. Drain Current
5
www.irf.com
© 2012 International Rectifier
February 13 ,2013
IRF7739L1TRPbF
1000
Duty Cycle = Single Pulse
Avalanche Current (A)
100
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assumingΔTj = 150°C and
Tstart =25°C (Single Pulse)
0.01
0.05
0.10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assumingΔΤj = 25°C and
Tstart = 150°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs. Pulsewidth
EAR , Avalanche Energy (mJ)
300
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 )
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 19a, 19b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
TOP
Single Pulse
BOTTOM 1.0% Duty Cy cle
ID = 160A
250
200
150
100
50
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·ta
Fig 16. Maximum Avalanche Energy vs. Temperature
Driver Gate Drive
D.U.T
+
ƒ
+
‚
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
di/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
+
Re-Applied
Voltage
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs
6
www.irf.com
© 2012 International Rectifier
February 13 ,2013
IRF7739L1TRPbF
Id
Vds
Vgs
L
VCC
DUT
0
20K
1K
Vgs(th)
S
Qgodr
Fig 18a. Gate Charge Test Circuit
Qgd
Qgs2 Qgs1
Fig 18b. Gate Charge Waveform
V(BR)DSS
15V
DRIVER
L
VDS
D.U.T
V
RGSG
+
- VDD
IAS
20V
tp
A
I AS
0.01Ω
tp
Fig 19a. Unclamped Inductive Test Circuit
VDS
V GS
RD
Fig 19b. Unclamped Inductive Waveforms
VDS
90%
D.U.T.
RG
+
- VDD
V10V
GS
10%
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
td(on)
Fig 20a. Switching Time Test Circuit
7
www.irf.com
© 2012 International Rectifier
tr
t d(off)
tf
Fig 20b. Switching Time Waveforms
February 13 ,2013
IRF7739L1TRPbF
DirectFET™ Board Footprint, L8 (Large Size Can).
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations
G = GATE
D = DRAIN
S = SOURCE
D
D
D
S
S
S
S
D
D
G
S
S
S
S
D
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com
© 2012 International Rectifier
February 13 ,2013
IRF7739L1TRPbF
DirectFET™ Outline Dimension, L8 Outline (LargeSize Can).
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations
DIMENSIONS
CODE
A
B
C
D
E
F
G
H
J
K
L
L1
M
P
R
METRIC
MIN MAX
9.05
9.15
6.85
7.10
5.90
6.00
0.55
0.65
0.58
0.62
1.18
1.22
0.98
1.02
0.73
0.77
0.38
0.42
1.35
1.45
2.55
2.65
5.35
5.45
0.68
0.74
0.09
0.17
0.02
0.08
IMPERIAL
MIN
MAX
0.356
0.360
0.270
0.280
0.232
0.236
0.022
0.026
0.023
0.024
0.046
0.048
0.039
0.040
0.029
0.030
0.015
0.017
0.053
0.057
0.100
0.104
0.211
0.215
0.027
0.029
0.003
0.007
0.001
0.003
DirectFET™ Part Marking
GATE MARKING
+
LOGO
PART NUMBER
BATCH NUMBER
DATE CODE
Line above the last character of
the date code indicates "Lead-Free"
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
9
www.irf.com
© 2012 International Rectifier
February 13 ,2013
IRF7739L1TRPbF
DirectFET™ Tape & Reel Dimension (Showing component orientation).
LOADED TAPE FEED DIRECTION
+
NOTE:
Controlling dimensions in mm
Std reel quantity is 4000 parts. (ordered as IRF7739L1TRPBF).
REEL DIMENSIO NS
STANDARD O PTIO N (QTY 4000)
IMPERIAL
METRIC
MAX
CODE
MIN
MIN
MAX
A
12.992
330.00
N.C
N.C
0.795
B
20.20
N.C
N.C
C
0.504
12.80
13.20
0.520
D
0.059
1.50
N.C
N.C
E
3.900
99.00
100.00
3.940
F
N.C
N.C
22.40
0.880
G
0.650
16.40
0.720
18.40
H
0.630
15.90
0.760
19.40
NOTE: CONTROLLING
DIMENSIONS IN MM
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
IMPERIAL
METRIC
MIN
MIN
MAX
MAX
4.69
12.10
11.90
0.476
0.154
3.90
0.161
4.10
0.642
0.623
16.30
15.90
0.291
7.40
0.299
7.60
0.291
0.283
7.40
7.20
0.390
9.90
0.398
10.10
0.059
N.C
1.50
N.C
0.059
1.50
0.063
1.60
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
†
Qualification Information
Industrial †† *
Qualification level
Moisture Sensitivity Level
MSL1
DirectFET
(per JEDEC J-STD-020D†††)
RoHS Compliant
†
††
†††
Yes
Qualification standards can be found at International Rectifier’s web site
http://www.irf.com/product-info/reliability
Higher qualification ratings may be available should the user have such requirements.
Please contact your International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
Applicable version of JEDEC standard at the time of product release.
* Industrial qualification standards except autoclave test conditions
Revision History
Date
Comments
2/12/2013
TR1 option removed and Tape & Reel Info updated accordingly. Hyperlinks added throw-out the document
IR WORLD HEADQUARTERS: 101N Sepulveda Blvd, El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
10
www.irf.com
© 2012 International Rectifier
February 13 ,2013