IRF7739L1TRPbF Applications l RoHS Compliant, Halogen Free l Lead-Free (Qualified up to 260°C Reflow) l Ideal for High Performance Isolated Converter Primary Switch Socket l Optimized for Synchronous Rectification l Low Conduction Losses l High Cdv/dt Immunity l Low Profile (<0.7mm) l Dual Sided Cooling Compatible l Compatible with existing Surface Mount Techniques l Industrial Qualified DirectFET Power MOSFET Typical values (unless otherwise specified) VDSS 40V min Qg SC Vgs(th) 220nC 81nC 2.8V S G ±20V max 0.70mΩ@ 10V Qgd S D S S S S D S DirectFET ISOMETRIC L8 M2 M4 RDS(on) tot S Applicable DirectFET Outline and Substrate Outline SB VGS L4 L6 L8 Description The IRF7739L1TRPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET TM packaging to achieve the lowest on-state resistance in a package that has a footprint smaller than a D2PAK and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems. The IRF7739L1TRPbF is optimized for high frequency switching and synchronous rectification applications. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance power converters. Ordering Information Base part number Standard Pack Package Type IRF7739L1TRPbF Form Tape and Reel DirectFET Large Can Orderable Part Number Quantity 4000 Absolute Maximum Ratings Parameter VDS Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V (Silicon Limited)f Continuous Drain Current, VGS @ 10V (Silicon Limited)f Continuous Drain Current, VGS @ 10V (Silicon Limited)e Continuous Drain Current, VGS @ 10V (Package Limited) f Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current VGS ID @ TC = 25°C ID @ TC = 100°C ID @ TA = 25°C ID @ TC = 25°C IDM EAS IAR g 10 8 T J = 25°C 6 4 T J = 125°C 2 0 Units 40 ±20 270 190 46 375 1070 270 160 V A mJ A VGS = 10V 0.92 0.91 0.90 0.89 0.88 0.87 0.86 0.85 5.0 Notes: Max. 0.93 ID = 160A Typical RDS (on) (mΩ) Typical RDS(on) (mΩ) h g IRF7739L1TRPbF 5.5 6.0 6.5 7.0 7.5 8.0 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage Click on the hyperlink (to the relevant technical document) for more details. 0 40 80 120 160 200 ID , Drain Current (A) Fig 2. Typical On-Resistance vs. Drain Current Click on the hyperlink (to the DirectFET website) for more details TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Surface mounted on 1 in. square Cu board, steady state. Starting TJ = 25°C, L = 0.021mH, RG = 25Ω, IAS = 160A. 1 www.irf.com © 2012 International Rectifier February 13 ,2013 IRF7739L1TRPbF Static @ TJ = 25°C (unless otherwise specified) Parameter Min. VGS = 0V, ID = 250μA V/°C Reference to 25°C, ID = 1.0mA mΩ VGS = 10V, ID = 160A VDS = VGS, ID = 250μA V Drain-to-Source Breakdown Voltage 40 ––– ––– ΔΒVDSS/ΔTJ RDS(on) VGS(th) Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance ––– ––– 0.008 0.70 ––– 1.0 ΔVGS(th)/ΔTJ IDSS Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current 2.0 ––– ––– 2.8 -6.7 ––– 4.0 ––– 20 IGSS Gate-to-Source Forward Leakage ––– ––– ––– ––– 250 100 Gate-to-Source Reverse Leakage Forward Transconductance ––– 280 ––– ––– -100 ––– Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge ––– ––– ––– 220 46 19 330 ––– ––– Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– ––– 81 74 120 ––– Output Charge ––– ––– 100 83 ––– ––– Gate Resistance Turn-On Delay Time Rise Time ––– 1.5 21 71 ––– ––– ––– Ω ––– ––– Turn-Off Delay Time Fall Time ––– ––– 56 42 ––– ––– ns Input Capacitance Output Capacitance Reverse Transfer Capacitance ––– ––– ––– 11880 2510 1240 ––– ––– ––– Output Capacitance Output Capacitance ––– ––– 8610 2230 ––– ––– Min. Typ. Max. Units ––– ––– 110 ––– ––– 1070 gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Coss Coss Conditions Typ. Max. Units BVDSS V i mV/°C μA VDS = 40V, VGS = 0V VDS = 32V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V S VDS = 10V, ID = 160A VDS = 20V nC VGS = 10V ID = 160A See Fig. 9 nC VDS = 16V, VGS = 0V VDD = 20V, VGS = 10V ID = 160A i RG=1.8Ω VGS = 0V pF VDS = 25V ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, f=1.0MHz VGS = 0V, VDS = 32V, f=1.0MHz Diode Characteristics Parameter IS ISM VSD trr Qrr Continuous Source Current (Body Diode) Pulsed Source Current g Conditions A MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 160A, VGS = 0V TJ = 25°C, IF = 160A, VDD = 20V (Body Diode) Diode Forward Voltage ––– ––– 1.3 V Reverse Recovery Time Reverse Recovery Charge ––– ––– 87 250 130 380 ns nC i di/dt = 100A/μs i Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400μs; duty cycle ≤ 2%. 2 www.irf.com © 2012 International Rectifier February 13 ,2013 IRF7739L1TRPbF Absolute Maximum Ratings f f c PD @TC = 25°C PD @TC = 100°C PD @TA = 25°C TP TJ TSTG Parameter Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range Max. Units 125 63 3.8 270 -55 to + 175 W °C Thermal Resistance e j k Parameter Typ. ––– 12.5 20 ––– ––– Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Can Junction-to-PCB Mounted RθJA RθJA RθJA RθJ-Can RθJ-PCB fl Max. 40 ––– ––– 1.2 0.4 Units °C/W Thermal Response ( Z thJC ) °C/W 10 1 D = 0.50 0.20 0.10 0.05 0.1 0.02 0.01 0.01 τJ R1 R1 τJ τ1 0.0001 1E-006 1E-005 R3 R3 0.0001 Ri (°C/W) R4 R4 τC τ τ2 τ1 τ2 τ3 τ3 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 R2 R2 0.001 τ4 τ4 τi (sec) 0.1080 0.000171 0.6140 0.053914 0.4520 0.006099 1.47e-05 0.036168 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Case Notes: Mounted on minimum footprint full size board with metalized Surface mounted on 1 in. square Cu board, steady state. TC measured with thermocouple incontact with top (Drain) of part. back and with small clip heatsink. Rθ is measured at TJ of approximately 90°C. Used double sided cooling, mounting pad with large heatsink. Surface mounted on 1 in. square Cu board (still air). 3 www.irf.com Mounted on minimum footprint full size board with metalized back and with small clip heatsink. (still air) © 2012 International Rectifier February 13 ,2013 IRF7739L1TRPbF 1000 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 10 BOTTOM 100 ≤60μs PULSE WIDTH 1 Tj = 25°C ≤60μs PULSE WIDTH Tj = 175°C 4.5V 4.5V 0.1 10 0.1 1 10 100 1000 0.1 V DS, Drain-to-Source Voltage (V) 100 1000 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 10 Fig 5. Typical Output Characteristics 1000 100 T J = 175°C T J = 25°C 10 1 VDS = 25V ≤60μs PULSE WIDTH 0.1 2 3 4 5 6 7 ID = 160A VGS = 10V 1.5 1.0 0.5 8 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 6. Typical Transfer Characteristics 100000 Fig 7. Normalized On-Resistance vs. Temperature 14.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED ID= 160A VGS, Gate-to-Source Voltage (V) C rss = C gd C oss = C ds + C gd C, Capacitance (pF) 1 V DS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics Ciss 10000 Coss Crss 1000 12.0 VDS= 32V VDS= 20V 10.0 8.0 6.0 4.0 2.0 0.0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs. Drain-to-Source Voltage 4 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V www.irf.com © 2012 International Rectifier 0 50 100 150 200 250 300 QG, Total Gate Charge (nC) Fig 9. Typical Total Gate Charge vs. Gate-to-Source Voltage February 13 ,2013 IRF7739L1TRPbF 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 TJ = 175°C 100 T J = 25°C 10 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 100μsec 100 1msec DC 10 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 1 1.0 0.0 0.5 1.0 1.5 2.0 2.5 0 3.0 1 10 100 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 10. Typical Source-Drain Diode Forward Voltage Fig11. Maximum Safe Operating Area 5.0 VGS(th), Gate threshold Voltage (V) 300 250 ID, Drain Current (A) 10msec 200 150 100 50 0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 ID = 250μA ID = 1.0mA ID = 1.0A 1.0 25 50 75 100 125 150 175 -75 -50 -25 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 12. Maximum Drain Current vs. Case Temperature Fig 13. Typical Threshold Voltage vs. Junction Temperature EAS , Single Pulse Avalanche Energy (mJ) 1100 ID 29A 46A BOTTOM 160A 1000 TOP 900 800 700 600 500 400 300 200 100 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current 5 www.irf.com © 2012 International Rectifier February 13 ,2013 IRF7739L1TRPbF 1000 Duty Cycle = Single Pulse Avalanche Current (A) 100 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assumingΔTj = 150°C and Tstart =25°C (Single Pulse) 0.01 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assumingΔΤj = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs. Pulsewidth EAR , Avalanche Energy (mJ) 300 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 ) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 19a, 19b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) TOP Single Pulse BOTTOM 1.0% Duty Cy cle ID = 160A 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·ta Fig 16. Maximum Avalanche Energy vs. Temperature Driver Gate Drive D.U.T + + - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • di/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. + Re-Applied Voltage - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Body Diode VDD Forward Drop Inductor Current Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs 6 www.irf.com © 2012 International Rectifier February 13 ,2013 IRF7739L1TRPbF Id Vds Vgs L VCC DUT 0 20K 1K Vgs(th) S Qgodr Fig 18a. Gate Charge Test Circuit Qgd Qgs2 Qgs1 Fig 18b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS D.U.T V RGSG + - VDD IAS 20V tp A I AS 0.01Ω tp Fig 19a. Unclamped Inductive Test Circuit VDS V GS RD Fig 19b. Unclamped Inductive Waveforms VDS 90% D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % td(on) Fig 20a. Switching Time Test Circuit 7 www.irf.com © 2012 International Rectifier tr t d(off) tf Fig 20b. Switching Time Waveforms February 13 ,2013 IRF7739L1TRPbF DirectFET Board Footprint, L8 (Large Size Can). Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations G = GATE D = DRAIN S = SOURCE D D D S S S S D D G S S S S D Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com © 2012 International Rectifier February 13 ,2013 IRF7739L1TRPbF DirectFET Outline Dimension, L8 Outline (LargeSize Can). Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations DIMENSIONS CODE A B C D E F G H J K L L1 M P R METRIC MIN MAX 9.05 9.15 6.85 7.10 5.90 6.00 0.55 0.65 0.58 0.62 1.18 1.22 0.98 1.02 0.73 0.77 0.38 0.42 1.35 1.45 2.55 2.65 5.35 5.45 0.68 0.74 0.09 0.17 0.02 0.08 IMPERIAL MIN MAX 0.356 0.360 0.270 0.280 0.232 0.236 0.022 0.026 0.023 0.024 0.046 0.048 0.039 0.040 0.029 0.030 0.015 0.017 0.053 0.057 0.100 0.104 0.211 0.215 0.027 0.029 0.003 0.007 0.001 0.003 DirectFET Part Marking GATE MARKING + LOGO PART NUMBER BATCH NUMBER DATE CODE Line above the last character of the date code indicates "Lead-Free" Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 9 www.irf.com © 2012 International Rectifier February 13 ,2013 IRF7739L1TRPbF DirectFET Tape & Reel Dimension (Showing component orientation). LOADED TAPE FEED DIRECTION + NOTE: Controlling dimensions in mm Std reel quantity is 4000 parts. (ordered as IRF7739L1TRPBF). REEL DIMENSIO NS STANDARD O PTIO N (QTY 4000) IMPERIAL METRIC MAX CODE MIN MIN MAX A 12.992 330.00 N.C N.C 0.795 B 20.20 N.C N.C C 0.504 12.80 13.20 0.520 D 0.059 1.50 N.C N.C E 3.900 99.00 100.00 3.940 F N.C N.C 22.40 0.880 G 0.650 16.40 0.720 18.40 H 0.630 15.90 0.760 19.40 NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MIN MAX MAX 4.69 12.10 11.90 0.476 0.154 3.90 0.161 4.10 0.642 0.623 16.30 15.90 0.291 7.40 0.299 7.60 0.291 0.283 7.40 7.20 0.390 9.90 0.398 10.10 0.059 N.C 1.50 N.C 0.059 1.50 0.063 1.60 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ † Qualification Information Industrial †† * Qualification level Moisture Sensitivity Level MSL1 DirectFET (per JEDEC J-STD-020D†††) RoHS Compliant Yes Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. * Industrial qualification standards except autoclave test conditions Revision History Date Comments 2/12/2013 TR1 option removed and Tape & Reel Info updated accordingly. Hyperlinks added throw-out the document IR WORLD HEADQUARTERS: 101N Sepulveda Blvd, El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 10 www.irf.com © 2012 International Rectifier February 13 ,2013