IRF7946 Data Sheet (290 KB, EN)

StrongIRFET™
IRF7946PbF
DirectFET® Power MOSFET
Applications
l
l
l
l
l
l
l
l
l
Brushed Motor drive applications
BLDC Motor drive applications
Battery powered circuits
Half-bridge and full-bridge topologies
Synchronous rectifier applications
Resonant mode power supplies
OR-ing and redundant power switches
DC/DC and AC/DC converters
DC/AC Inverters
VDSS
RDS(on) typ.
max.
ID (Silicon Limited)
40V
1.1mΩ
1.4mΩ
198A
ID (Package Limited)
90A
G
Benefits
l
l
D
S
Base part number
Package Type
IRF7946TRPbF
DirectFET MX
Standard Pack
Form
Quantity
Tape and Reel
4800
6.0
Complete Part Number
IRF7946TRPbF
200
ID = 90A
Limited By Package
4.0
T J = 125°C
2.0
150
100
50
T J = 25°C
0.0
4
6
8
10
12
14
16
18
20
0
25
50
Fig 1. Typical On-Resistance vs. Gate Voltage
www.irf.com © 2014 International Rectifier
75
100
125
150
T C , Case Temperature (°C)
VGS, Gate -to -Source Voltage (V)
1
DirectFET™ ISOMETRIC
MX
ID, Drain Current (A)
l
S
D
Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
Fully Characterized Capacitance and Avalanche
SOA
Enhanced body diode dV/dt and dI/dt Capability
RoHS Compliant Containing no Lead, no Bromide
and no Halogen
RDS(on), Drain-to -Source On Resistance (m Ω)
l
c
Fig 2. Maximum Drain Current vs. Case Temperature
Submit Datasheet Feedback
November 25, 2014
IRF7946PbF
Absolute Maximum Ratings
Symbol
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
Parameter
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Pulsed Drain Current
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Operating Junction and
Storage Temperature Range
Max.
198
125
793
96
0.77
± 20
-55 to + 150
Units
85
200
See Fig. 14, 15, 22a, 22b
mJ
c
c
d
VGS
TJ
TSTG
Avalanche Characteristics
EAS (Thermally limited)
EAS (Thermally limited)
IAR
EAR
Thermal Resistance
Symbol
RθJA
RθJA
RθJA
RθJC
RθJA-PCB
Single Pulse Avalanche Energy
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
d
e
l
d
Parameter
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Typ.
–––
12.5
20
n
p
o
qk
–––
1.0
A
W
W/°C
V
°C
A
mJ
Max.
45
–––
–––
1.3
–––
Units
°C/W
Static @ TJ = 25°C (unless otherwise specified)
Symbol
V(BR)DSS
ΔV(BR)DSS/ΔTJ
RDS(on)
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Min.
40
–––
–––
VGS(th)
IDSS
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Internal Gate Resistance
2.2
–––
–––
–––
–––
–––
RG
Notes:
 Mounted on minimum footprint full size board with metalized

Typ.
–––
0.03
1.1
1.7
3.0
–––
–––
–––
–––
0.67
Max.
–––
–––
1.4
–––
3.9
1.0
150
100
-100
–––
Units
V
V/°C
mΩ
mΩ
V
μA
nA
Conditions
VGS = 0V, ID = 250μA
Reference to 25°C, ID = 1.0mA
VGS = 10V, ID = 90A
VGS = 6.0V, ID = 72A
VDS = VGS, ID = 150μA
VDS = 40V, VGS = 0V
VDS = 40V, VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
g
g
d
Ω
TC measured with thermocouple mounted to top (Drain) of part.
back and with small clip heatsink.
Ž Used double sided cooling , mounting pad with large heatsink.
 Mounted on minimum
Œ
Surface mounted on 1 in. square Cu
(still air).
2
 Mounted to a PCB with
small clip heatsink (still air)
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
footprint full size board with
metalized back and with small
clip heatsink (still air)
November 25, 2014
IRF7946PbF
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
gfs
Forward Transconductance
Conditions
Min.
Typ.
Max.
Units
91
–––
–––
S
VDS = 10V, ID = 90A
nC
ID = 90A
Qg
Total Gate Charge
–––
141
212
Q gs
Gate-to-Source Charge
–––
36
–––
VDS =20V
Q gd
Gate-to-Drain ("Miller") Charge
–––
44
–––
VGS = 10V
Q sync
Total Gate Charge Sync. (Qg - Qgd )
–––
97
–––
ID = 90A, VDS =0V, VGS = 10V
ns
g
td(on)
Turn-On Delay Time
–––
20
–––
tr
Rise Time
–––
49
–––
ID = 30A
VDD = 20V
td(off)
Turn-Off Delay Time
–––
54
–––
RG = 2.7Ω
tf
Fall Time
–––
41
–––
Ciss
Input Capacitance
–––
6852
–––
Coss
Output Capacitance
–––
1046
–––
Crss
Reverse Transfer Capacitance
–––
735
–––
ƒ = 1.0 MHz
Coss eff. (ER)
Effective Output Capacitance (Energy Related)
–––
1307
–––
VGS = 0V, VDS = 0V to 32V
Coss eff. (TR)
Effective Output Capacitance (Time Related)
–––
1465
–––
VGS = 0V, VDS = 0V to 32V
Min.
Typ.
Max.
–––
–––
96
A
–––
–––
793
A
–––
0.75
1.2
V
VGS = 10V
pF
g
VGS = 0V
VDS = 25V
i
h
Diode Characteristics
Symbol
IS
Parameter
Continuous Source Current
c
Units
Pulsed Source Current
d
(Body Diode)
Diode Forward Voltage
dv/dt
Peak Diode Recovery
trr
Reverse Recovery Time
f
Reverse Recovery Charge
IRRM
Reverse Recovery Current
Notes:
 Calculated continuous current based on maximum allowable
junction temperature. Package limit is 90A.
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.021mH
RG = 50Ω, IAS = 90A, VGS =10V.
„ ISD ≤ 90A, di/dt ≤ 1135A/μs, VDD ≤ V(BR)DSS, TJ ≤ 150°C.
3
integral reverse
G
p-n junction diode.
VSD
Q rr
D
showing the
(Body Diode)
ISM
Conditions
MOSFET symbol
www.irf.com © 2014 International Rectifier
–––
1.6
–––
V/ns
–––
49
–––
ns
–––
50
–––
–––
74
–––
–––
73
–––
–––
2.6
–––
nC
TJ = 25°C, IS = 90A, VGS = 0V
S
g
TJ = 175°C, IS = 90A, VDS = 40V
TJ = 25°C
VR = 34V,
TJ = 125°C
IF = 90A
TJ = 25°C
di/dt = 100A/μs
g
TJ = 125°C
A
TJ = 25°C
… Pulse width ≤ 400μs; duty cycle ≤ 2%.
† Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS .
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
‰ Rθ is measured at TJ approximately 90°C.
Š Limited by TJmax starting TJ = 25°C, L= 1mH, RG = 50Ω, IAS = 20A, VGS =10V
Submit Datasheet Feedback
November 25, 2014
IRF7946PbF
1000
1000
100
BOTTOM
10
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
4.5V
BOTTOM
100
4.5V
≤60μs PULSE WIDTH
≤60μs PULSE WIDTH
Tj = 150°C
Tj = 25°C
10
1
0.1
1
10
100
0.1
Fig 3. Typical Output Characteristics
100
1.8
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
10
Fig 4. Typical Output Characteristics
1000
100
TJ = 150°C
T J = 25°C
10
VDS = 10V
≤60μs PULSE WIDTH
1.0
ID = 90A
VGS = 10V
1.6
1.4
1.2
1.0
0.8
0.6
2
3
4
5
6
7
8
-60 -40 -20 0
Fig 6. Normalized On-Resistance vs. Temperature
Fig 5. Typical Transfer Characteristics
100000
14.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
VGS, Gate-to-Source Voltage (V)
C rss = C gd
C oss = C ds + C gd
10000
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Ciss
Coss
Crss
1000
100
ID= 90A
12.0
VDS= 32V
VDS= 20V
10.0
8.0
6.0
4.0
2.0
0.0
1
10
100
0
VDS, Drain-to-Source Voltage (V)
www.irf.com © 2014 International Rectifier
20
40
60
80 100 120 140 160 180
QG, Total Gate Charge (nC)
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage
4
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage
Submit Datasheet Feedback
November 25, 2014
IRF7946PbF
10000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
TJ = 150°C
100
T J = 25°C
10
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
Limited by
Package
10
DC
Tc = 25°C
Tj = 150°C
Single Pulse
0.1
0.01
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
0.1
1.6
1
10
100
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
Fig 10. Maximum Safe Operating Area
Fig 9. Typical Source-Drain Diode
Forward Voltage
1.4
48
Id = 1.0mA
47
VDS= 0V to 32V
1.2
46
1.0
45
Energy (μJ)
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
10msec
1
VGS = 0V
1.0
100μsec
1msec
100
44
43
0.8
0.6
0.4
42
0.2
41
0.0
40
-60 -40 -20 0
0
20 40 60 80 100 120 140 160
T J , Temperature ( °C )
10
15
20
25
30
35
40
45
VDS, Drain-to-Source Voltage (V)
Fig 11. Drain-to-Source Breakdown Voltage
RDS(on), Drain-to -Source On Resistance ( mΩ)
5
Fig 12. Typical COSS Stored Energy
10.0
8.0
VGS = 5.5V
VGS = 6.0V
6.0
VGS =10V
VGS = 7.0V
VGS = 8.0V
4.0
2.0
0.0
0
200
400
600
800
1000
ID, Drain Current (A)
Fig 13. Typical On-Resistance vs. Drain Current
5
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
November 25, 2014
IRF7946PbF
Thermal Response ( Z thJC ) °C/W
10
1
D = 0.50
0.20
0.10
0.05
0.1
0.02
0.01
0.01
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Avalanche Current (A)
1000
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 125°C and
Tstart =25°C (Single Pulse)
100
10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤ j = 25°C and
Tstart = 125°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
90
80
EAR , Avalanche Energy (mJ)
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 90A
70
60
50
40
30
20
10
0
25
50
75
100
125
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy vs. Temperature
6
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
November 25, 2014
IRF7946PbF
16
IF = 54A
V R = 34V
14
3.5
TJ = 25°C
TJ = 125°C
12
3.0
2.5
IRRM (A)
VGS(th) , Gate threshold Voltage (V)
4.0
ID = 150μA
ID = 1.0mA
2.0
ID = 1.0A
10
8
6
4
1.5
2
0
1.0
-75 -50 -25
0
25
50
0
75 100 125 150
200
600
800
1000
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig 17. Threshold Voltage vs. Temperature
16
350
IF = 90A
V R = 34V
14
TJ = 25°C
TJ = 125°C
12
10
QRR (nC)
IRRM (A)
400
diF /dt (A/μs)
T J , Temperature ( °C )
8
6
300
IF = 54A
V R = 34V
250
TJ = 25°C
TJ = 125°C
200
150
4
100
2
0
50
0
200
400
600
800
1000
0
200
diF /dt (A/μs)
400
600
800
1000
diF /dt (A/μs)
Fig. 20 - Typical Stored Charge vs. dif/dt
Fig. 19 - Typical Recovery Current vs. dif/dt
400
IF = 90A
V R = 34V
350
TJ = 25°C
TJ = 125°C
QRR (nC)
300
250
200
150
100
50
0
200
400
600
800
1000
diF /dt (A/μs)
Fig. 21 - Typical Stored Charge vs. dif/dt
7
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
November 25, 2014
IRF7946PbF
Driver Gate Drive
D.U.T
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
V DD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
20V
VGS
+
V
- DD
IAS
A
0.01Ω
tp
I AS
Fig 22b. Unclamped Inductive Waveforms
Fig 22a. Unclamped Inductive Test Circuit
RD
VDS
VDS
90%
VGS
D.U.T.
RG
+
- VDD
V10V
GS
10%
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
td(on)
Fig 23a. Switching Time Test Circuit
tr
t d(off)
Fig 23b. Switching Time Waveforms
Id
Current Regulator
Same Type as D.U.T.
Vds
Vgs
50KΩ
12V
tf
.2μF
.3μF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 24a. Gate Charge Test Circuit
8
www.irf.com © 2014 International Rectifier
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
Submit Datasheet Feedback
November 25, 2014
IRF7946PbF
DirectFET® Board Footprint, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
G=GATE
D=DRAIN
S=SOURCE
D
D
S
G
S
D
D
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
9
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
November 25, 2014
IRF7946PbF
DirectFET® Outline Dimension, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes
all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
CODE MIN MAX
6.25 6.35
A
4.80 5.05
B
3.85 3.95
C
0.35 0.45
D
0.68 0.72
E
0.68 0.72
F
G
1.38 1.42
H
0.80 0.84
0.38 0.42
J
0.88 1.02
K
2.28 2.42
L
M
0.59 0.70
R
0.03 0.08
0.08 0.17
P
IMPERIAL
MAX
MIN
0.246 0.250
0.189 0.199
0.152 0.156
0.014 0.018
0.027 0.028
0.027 0.028
0.054 0.056
0.031 0.033
0.015 0.017
0.035 0.040
0.090 0.095
0.023 0.028
0.001 0.003
0.003 0.007
Dimensions are shown in
millimeters (inches)
DirectFET® Part Marking
GATE MARKING
LOGO
PART NUMBER
BATCH NUMBER
DATE CODE
Line above the last character of
the date code indicates "Lead-Free"
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
10
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
November 25, 2014
IRF7946PbF
DirectFET® Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm Std reel.
quantity is 4800 parts. (ordered as IRF7946PBF).
REEL DIMENSIONS
STANDARD OPTION(QTY 4800)
METRIC
IMPERIAL
MIN
CODE
MAX
MAX
MIN
12.992
A
N.C
330.0
N.C
0.795
B
N.C
20.2
N.C
0.504
C
0.520
12.8
13.2
0.059
D
1.5
N.C
N.C
3.937
E
100.0
N.C
N.C
N.C
F
0.724
N.C
18.4
G
0.488
0.567
12.4
14.4
H
0.469
0.606
11.9
15.4
NOTE: CONTROLLING
DIMENSIONS IN MM
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
IMPERIAL
METRIC
MIN
MIN
MAX
MAX
0.311 0.319
8.10
7.90
0.154 0.161
3.90
4.10
11.90 12.30 0.469 0.484
0.215 0.219
5.55
5.45
0.201 0.209
5.10
5.30
0.256 0.264
6.70
6.50
0.059
1.50
N.C
N.C
0.059 0.063
1.50
1.60
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
11
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
November 25, 2014
IRF7946PbF
†
Qualification information
Consumer
Qualification level
††
†††
(per JEDEC JESD47F
Moisture Sensitivity Level
guidelines)
MS L1
DFET 1.5
†††
(per JE DE C J-S TD-020D
)
Yes
RoHS compliant
† Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/
†† Higher qualification ratings may be available should the user have such requirements. Please contact your
International Rectifier sales representative for further information: http:www.irf.com/whoto-call/salesrep/
††† Applicable version of JEDEC standard at the time of product release.
Revision History
Date
Comment
5/7/2014
5/30/2014
11/25/2014
• Updated data sheet based on corporate template.
• Updated Qual level from "MSL3" to "MSL1" on page12.
• Updated ordering information to reflect the End-Of-life (EOL) of the mini-reel option (EOL notice #264).
• Remove IRF7946TR1PBF quantity= 1000 from ordering table on page1.
• Remove continuous drain current package limt=90A from Absolute Maximum table-on page2
• Updated EAS (L =1mH) = 200mJ on page 2
• Updated note 10 “Limited by TJmax , starting TJ = 25°C, L = 1mH, RG = 50Ω, IAS = 20A, VGS =10V”. on page 3
• Updated RθJA from “60°C/W” to “45°C/W” on page 2
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
12
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
November 25, 2014