NBLVEP16VR 2.5V/3.3V/5VECL Differential Receiver/Driver with Oscillator Gain Stage and Enabled High Gain Outputs The NBLVEP16VR is an ECL/LVPECL oscillator gain stage with high−gain output buffers, selectable output enable and a feedback buffer. The NBLVEP16VR is a solution for crystal oscillators and SAW−based voltage−controlled oscillators. • Q and Q Outputs have Selectable 4 mA or 8 mA, Self Bias Current Sources • QHG and QHG have Selectable 10 mA, Self Bias Current Sources • Synchronous Output Enable of the High−Gain Outputs with Selectable Disabled State • Selectable LVCMOS/LVTTL or LVPECL Level Input of the Output Enable Pin • Maximum Frequency > 2.5 GHz Typical • (LV)PECL Mode Operating Range: VCC = 2.375 V to 5.5 V with VEE = 0 V • NECL Mode Operating Range: VCC = 0 V with VEE = −2.375 V to −5.5 V • Temperature Compensated Outputs • 50 mV Clock Input Sensitivity • VBB Output Supports Current Source/Sink Capability up to a Robust 1.5 mA 4 mA ea. (opt.) http://onsemi.com MARKING DIAGRAM XXXX XXXX ALYW Bottom View QFN−16 MN SUFFIX CASE 485G XXXX A L Y W = Device Code = Assembly Location = Wafer Lot = Year = Work Week ORDERING INFORMATION Package Shipping† NBLVEP16VRMN QFN−16 123 / Rail NBLVEP16VRMNR2 QFN−16 3000/ Tape & Reel Device NBWLVEP16VR Wafer Refer to Note 1. 1. Contact Sales Representative. †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. 4 mA ea. CS_SEL VEE Q Q D D 470 1 Q Q QHG QHG 10 mA ea. (opt.) 470 VBB 0 VEEP VBB VBB_ADJ OD_MODE EN LEN Q LATCH D LVCMOS/LVTTL Threshold © Semiconductor Components Industries, LLC, 2006 July, 2006 − Rev. 4 Figure 1. Logic Diagram 1 EN_SEL Publication Order Number: NBLVEP16VR/D NBLVEP16VR 4 mA ea. 4 mA ea. (opt.) CS_SEL VEE Q Q D D Q Q 1 QHG QHG 10 mA ea. (opt.) 470 470 0 VEEP VBB VBB VBB_ADJ OD_MODE LEN Q LATCH EN D EN_SEL LVCMOS/LVTTL Threshold Figure 2. Logic Diagram Table 1. Q AND Q INTERNAL CURRENT SOURCE SELECTOR Table 2. QHG AND QHG INTERNAL CURRENT SOURCE SELECTOR CS_SEL Q Q See Figure VEEP QHG QHG See Figure OPEN 4 mA Typical 4 mA Typical 13, 13 OPEN 0 mA 0 mA 8, 11 VEE 8 mA Typical 8 mA Typical 10, 13 VEE 10 mA Typical 10 mA Typical 9, 12 VCC 0 mA 4 mA Typical 13, 13 Table 3. OUTPUT ENABLE AND OUTPUT DISABLED STATE TRUTH TABLE EN_SEL† OD−MODE* EN* Q and Q QHG QHG VCC or OPEN Low or OPEN LVPECL Low, VEE or OPEN Data Data Data VCC or OPEN Low or OPEN LVPECL High or VCC Data Low High VEE Low or OPEN LVCMOS Low, VEE, or OPEN Data Low High VEE Low or OPEN LVCMOS High or VCC Data Data Data VCC or OPEN High LVPECL Low, VEE or OPEN Data Data Data VCC or OPEN High LVPECL High or VCC Data High Low VEE High LVCMOS Low, VEE, or OPEN Data High Low VEE High LVCMOS High or VCC Data Data Data *Pins will default LOW when left open. †Pin will default HIGH when left open. http://onsemi.com 2 NBLVEP16VR OD_MODE Q Q NC VCC 16 15 14 13 Exposed Pad (EP) NC 12 D 3 10 QHG VBB VBB 4 9 EN_SEL VBB NBLVEP16VR EN 6 7 Die: 1.16 x 1.19 mm (x) (y) D QHG 5 VCC NBLVEP16VR OD_MODE CS_SEL 11 2 Q VCC NC 1 D Q D Bond Pad: 84 m Diameter Die Thickness: 11 mil, $1 mil CS_SEL QHG QHG EN_SEL VEEP 8 EN VBB_ADJ VEE VEE VBB_ADJ VEE VEEP Figure 4. Die Map Figure 3. Pinout Diagram (Top View) Table 4. PIN DESCRIPTION Pin No Name 1 OD_MODE* I/O 2 Description LVCMOS/LVTTL Input (See Table 3) Selectable Mode of Output Disabled Level D ECL / LVPECL Input Clock / Data Input 3 D ECL / LVPECL Input Inverted Clock / Data Input 4 VBB Reference Voltage Output Reference Voltage Output 5 EN* ECL / LVPECL or LVCMOS/LVTTL Input (see Table 3) Output Enable Synchronous with D and D 6 VBB_ADJ 7 VEE 8 VEEP 9 EN_SEL† 10 Adjust Standard VBB Levels Upward When Tied to VCC for 2.5 V Power Supply. Open for 3.3 V and 5 V Power Supply. Negative Power Supply Negative Power Supply Open or Tied to VEE (See Table 1) Optional 10mA Current Source For QHG and QHG LVCMOS / LVTTL Input (See Table 3) Input Level Selector Pin for EN QHG ECL / LVPECL Output Inverted High−Gain Output, Gain > 200 11 QHG ECL / LVPECL Output High−Gain Output, Gain > 200 12 CS_SEL 13 VCC Positive Power Supply Positive Power Supply 14 NC No Connect No Connect 15 Q ECL / LVPECL Output ECL/LVPECL Output for Feedback Loop 16 Q ECL / LVPECL Output Inverted ECL/LVPECL Output for Feedback Loop Power Supply (OPT) Exposed Pad on Package Bottom Should Only Be Connected to VEE or Left Open EP Selects Q and Q Current Source Magnitude (see Table 1), Open or Tied to VEE or VCC ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ *Pins will default LOW when left open. †Pin will default HIGH when left open. http://onsemi.com 3 NBLVEP16VR APPLICATIONS INFORMATION The output disable mode state pin, OD_MODE, adds functional flexibility by giving the designer a choice of the QHG outputs’ polarity when these high−gain outputs are disabled. For example, with OD_MODE LOW and EN LOW (LVPECL), the input is passed to the outputs and the data output equals the data input. If the D input is LOW when the EN goes HIGH, the next data transition to a HIGH is ignored and QHG remains LOW and QHG remains HIGH. The next positive transition of the data input is not passed on to the QHG outputs under these conditions. The QHG and QHG outputs remain in their disabled state as long as the EN input is held HIGH. The EN input has no influence on the Q or Q outputs and the data inputs are passed on to these outputs whether EN is HIGH or LOW. When the data input is HIGH and EN goes HIGH, it will force QHG LOW and QHG HIGH on the next negative transition of the D input. This configuration is ideal for crystal oscillator applications where the oscillator can be free−running and QHG/QHG gate on and off synchronously without adding extra counts to the output. See truth table and timing diagram for detailed ENable functions and options. The NBLVEP16VR provides a VBB and internal 470 bias resistors from D to VBB and D to VBB for ac coupled single−ended or differential input signal(s). The VBB_ADJ pin is used for 2.5 V single−ended operation when it is connected to VCC. The VBB output current source/sink capability can support a robust 1.5 mA. For single−ended input conditions, the unused differential input is internally connected to VBB as a switching reference voltage. Decouple VBB and VCC with a 0.01 F capacitor. This internal VBB will rebias AC coupled input(s). Inputs D or D must be signal driven or auto oscillation may result. The NBLVEP16VR is an ECL/LVPECL oscillator gain stage with high−gain output buffers, selectable output enable and a feedback buffer. The NBLVEP16VR is a solution for crystal oscillators and SAW−based voltage−controlled oscillators. Design versatility is enhanced with EN, a synchronous output enable pin to eliminate runt pulses; EN_SEL, an input state selector pin offering LVCMOS/LVTTL or ECL/LVPECL level control of EN; and OD_MODE, an output disable mode state pin which selects the polarity of the high−gain output’s disabled state. The NBLVEP16VR Q and Q outputs are ideal for feedback applications common in crystal oscillator gain blocks. They each have a selectable on−chip pull−down current source. External resistors may be used to increase the pull−down current to a maximum of 25 mA. The QHG and QHG outputs each have an optional on−chip pull−down current source of 10 mA. When VEEP is left open, the 10 mA output current sources are disabled and the QHG and QHG outputs operate as standard ECL/LVPECL. When VEEP is connected to VEE, the 10 mA current sources are activated. The QHG and QHG pull−down current can be decreased by using a resistor connect from VEEP to VEE. See current source truth table for functions and options. The output enable input pin, EN, is synchronized with the D and D data input signals in a way that furnishes glitchless gating of the QHG and QHG outputs and allows continuous oscillator operation. For applications that require output enable control, the NBLVEP16VR provides expanded output enable selectability. The logic level of the input state selector pin, EN_SEL, will determine whether the EN pin accepts ECL/LVPECL or LVCMOS/LVTTL logic levels. D D (PECL) EN_SEL HIGH (OPEN) EN EN_SEL LOW (CMOS) (SHORTED TO VEE) OD_MODE Q Q QHG QHG Figure 5. Timing Diagram http://onsemi.com 4 NBLVEP16VR ATTRIBUTES Characteristics ESD Protection Value Human Body Model Machine Model Charged Device Model > 2 kV > 150 V > 1 kV Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Flammability Rating Level 1 Oxygen Index: 28 to 34 UL 94 V−0 @ 0.125 in Transistor Count 388 Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 1. For additional information, see Application Note AND8003/D. MAXIMUM RATINGS Symbol Rating Unit VCC LVPECL Mode Power Supply Parameter VEE = 0 V Condition 1 6 V VEE NECL Mode Power Supply VCC = 0 V −6 V VI LVPECL Mode Input Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 −6 V V IBB VBB Current Sink/Source $1.5 mA IIN Input Current (VIN − VBB) B 470 $5 mA Iout Output Current 50 100 mA mA TA Operating Temperature Range −40 to +85 °C Tstg Storage Temperature Range −65 to +150 °C JA Thermal Resistance (Junction−to−Ambient) 0 LFPM 500 LFPM 41.6 35.2 °C/W °C/W JC Thermal Resistance (Junction−to−Case) Standard Board (2S2P) 4.0 °C/W D, D Continuous Surge Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. http://onsemi.com 5 NBLVEP16VR DC CHARACTERISTICS, LVPECL VCC = 2.5 V, VEE = 0 V (Note 2, 6) −40°C 25°C 85°C Characteristic Min Typ Max Min Typ Max Min Typ Max Unit IEE Negative Power Supply Current (Note 3) 30 35 48 30 38 48 35 40 54 mA VOH Output HIGH Voltage (Note 4) 1340 1670 1340 1670 1340 1670 mV VOL Output LOW Voltage (Note 4) 620 950 620 950 620 950 mV VIH Input High Voltage (Single−Ended) (D, D, EN) (Notes 5, 6) 1655 2000 1655 2000 1655 2000 mV VIL Input Low Voltage (Single−Ended) (D, D, EN) (Notes 5, 6) 1050 1395 1050 1395 1050 1395 mV VBB Output Voltage Reference (Note 6) 1420 1630 1420 1630 1420 1630 mV VIHCMR Input High Voltage Common Mode Range (Differential Configuration) 2.5 1.2 2.5 1.2 2.5 V IIH Input HIGH Current (Note 5) EN 150 A IIL Input LOW Current (Note 5) EN Symbol 1525 1.2 1525 150 0.5 1525 150 0.5 0.5 A NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 2. Input and output parameters vary 1:1 with VCC. 3. VEEP and CS_SEL open. 4. QHG/QHG outputs loaded with 50 to VCC − 2.0 V (VEEP = OPEN) Figure 11 or with optional current source (VEEP = VEE) Figure 12. Q/Q outputs loaded with 8 mA current source (CS_SEL = VEE). 5. EN_SEL Open. 6. VBB_ADJ tied to VCC for 2.5 V single−ended input operation. DC CHARACTERISTICS, LVPECL VCC = 3.3 V, VEE = 0 V (Note 7) −40°C 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 30 38 48 30 40 48 35 42 54 mA 2140 2470 2140 2470 2140 2470 mV 1420 1750 1420 1750 1420 1750 mV Input High Voltage (Single−Ended) (D, D, EN) (Note 10) 2075 2420 2075 2420 2075 2420 mV VIL Input Low Voltage (Single−Ended) (D, D, EN) (Note 10) 1355 1675 1355 1675 1355 1675 mV VBB Output Voltage Reference 1790 2030 1790 2030 1790 2030 mV VIHCMR Input High Voltage Common Mode Range (Differential Configuration) 3.3 1.2 3.3 1.2 3.3 V IIH Input HIGH Current (Note 10) EN 150 A IIL Input LOW Current (Note 10) EN Symbol Characteristic IEE Negative Power Supply Current (Note 8) VOH Output High Voltage (Note 9) VOL Output Low Voltage (Note 9) VIH 1900 1.2 150 0.5 1900 150 0.5 0.5 1900 A NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 7. Input and output parameters vary 1:1 with VCC. 8. VEEP and CS_SEL open. 9. QHG/QHG outputs loaded with 50 to VCC − 2.0 V (VEEP = OPEN) Figure 11 or with optional current source (VEEP = VEE) Figure 12. Q/Q outputs loaded with 8 mA current source (CS_SEL = VEE). 10. EN_SEL Open. http://onsemi.com 6 NBLVEP16VR DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 11) −40°C 25°C 85°C Characteristic Min Typ Max Min Typ Max Min Typ Max Unit IEE Negative Power Supply Current (Note 12) 30 41 48 30 43 48 35 45 54 mA VOH Output High Voltage (Note 13) 3840 4170 3840 4170 3840 4170 mV VOL Output Low Voltage (Note 13) 3120 3450 3120 3450 3120 3450 mV VIH Input High Voltage (Single−Ended) (D, D, EN) (Note 14) 3775 4120 3775 4120 3775 4120 mV VIL Input Low Voltage (Single−Ended) (D, D, EN) (Note 14) 3055 3375 3055 3375 3055 3375 mV VBB Output Voltage Reference 3490 3730 3490 3730 3490 3730 mV VIHCMR Input High Voltage Common Mode Range (Differential Configuration) 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current (Note 14) EN 150 A IIL Input LOW Current (Note 14) EN Symbol 3600 2.0 3600 150 3600 150 0.5 0.5 0.5 A NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 11. Input and output parameters vary 1:1 with VCC. 12. VEEP and CS_SEL open. 13. QHG/QHG outputs loaded with 50 to VCC − 2.0 V (VEEP = OPEN) Figure 11 or with optional current source (VEEP = VEE) Figure 12. Q/Q outputs loaded with 8 mA current source (CS_SEL = VEE). 14. EN_SEL Open. DC CHARACTERISTICS, NECL VCC = 0 V, VEE = −5.5V to −2.375 V (Note 15) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 38 48 30 40 48 35 42 54 mA IEE Negative Power Supply Current (Note 16) 30 VOH Output High Voltage (Note 17) −1160 −830 −1160 −830 −1160 −830 mV VOL Output Low Voltage (Note 17) −1880 −1550 −1880 −1550 −1880 −1550 mV VIH Input High Voltage (Single−Ended) (D, D, EN) (Notes 18, 19) −3.3 V VBB_ADJ = OPEN −2.5 V VBB_ADJ = VCC VIL mV −1225 −845 Input Low Voltage (Single−Ended) (D, D, EN) (Notes 18, 19) −3.3 V VBB_ADJ = OPEN −2.5 V VBB_ADJ = VCC −1945 −1450 VBB Output Voltage Reference −3.3 V or −5.2 V VBB_ADJ = OPEN −2.5 V (Note 19) VBB_ADJ = VCC −1510 −1080 VIHCMR Input High Voltage Common Mode Range (Differential Configuration) VEE v −5 V IIH Input HIGH Current (Note 18) EN IIL Input LOW Current (Note 18) EN −880 −500 −1225 −845 −880 −500 −1225 −845 −880 −500 mV −1400 −975 −1625 −1105 −1945 −1450 −1270 −870 −1510 −1080 0 VEE+1.2 VEE+1.2 VEE+2.0 −1400 −975 −1625 −1105 −1945 −1450 −1270 −870 −1510 −1080 0 VEE+1.2 VEE+2.0 150 0.5 −1400 −975 −1270 −870 0.5 mV 0 V 150 A VEE+2.0 150 0.5 −1625 −1105 V A NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 15. Input and output parameters vary 1:1 with VCC. 16. VEEP and CS_SEL open. 17. QHG/QHG outputs loaded with 50 to VCC − 2.0 V (VEEP = OPEN) Figure 11 or with optional current source (VEEP = VEE) Figure 12. Q/Q outputs loaded with 8 mA current source (CS_SEL = VEE). 18. EN_SEL Open. 19. VBB_ADJ tied to VCC for −2.5 V single−ended operation. http://onsemi.com 7 NBLVEP16VR (LVCMOS/LVTTL DC CHARACTERISTICS VCC = 2.375 V or 5.0 V, VEE = 0 V or VCC = 0 V, VEE = −2.375 V to −5.5 V (Note 20) −40°C Min Characteristic Symbol 25°C Typ Max Min 85°C Typ Max Min Typ Max Unit VIH Input High Voltage VEE+2.0 VCC VEE+ 2.0 VCC VEE+2.0 VCC V VIL Input Low Voltage VEE VEE+0.8 VEE VEE+0.8 VEE VEE+0.8 V IIH Input HIGH Current −150 150 −150 150 −150 150 A IIL Input LOW Current −150 150 −150 150 −150 150 A NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 20. EN_SEL = LOW When EN is Used as a LVCMOS/LVTTL Input. AC CHARACTERISTICS VCC = 2.375 V to 5.5 V; VEE = 0 V or VCC = 0 V VEE = −2.375 V to −5.5 V (Note 21) −40°C Characteristic Symbol Min Typ 25°C Max Min Typ 500 310 210 700 500 380 215 165 335 335 300 280 410 415 85°C Max Min Typ 500 280 190 700 450 330 230 205 360 360 315 300 440 450 Max Unit VOUTPP Differential Output (QHG) Voltage (Peak−to−Peak) fout < 1 GHz fout < 2 GHz fout < 2.5 GHz 500 260 210 660 500 400 tPLH, tPHL Propagation Delay (Differential) Figure 10 D to Q (CS_SEL = OPEN) Figure 10 D to Q (CS_SEL = VEE) Figure 8 D to QHG (VEEP Open) Figure 9 D to QHG (VEEP = VEE) 215 155 315 320 290 270 390 400 tS Set−Up Time EN to D 0.5 0.5 0.5 ns tH Hold Time EN to D 1.0 1.0 1.0 ns tJITTER Random Clock Jitter (RMS) tSKEW Duty Cycle Skew (Note 23) 5 20 5 20 5 20 ps VINPP Differential Input Voltage (Peak−to−Peak) (Note 22) Single−Ended Configuration D to QHG D to Q D to QHG D to Q 25 50 50 100 800 800 1200 1200 25 50 50 100 800 800 1200 1200 25 50 50 100 800 800 1200 1200 mV mV mV tr tf Output Rise/Fall Times (20% − 80%) Q, Q (CS_SEL = VEE or OPEN) QHG, QHG (VEEP = VEE or OPEN) 70 90 120 150 300 210 70 90 120 150 300 210 70 90 120 150 300 210 DCO Output Duty Cycle (Note 24) (QHG) 45 50 55 45 50 55 45 50 55 385 395 475 490 0.5 385 405 495 505 0.5 mV mV 400 445 520 530 0.5 ps ps ps % NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. The device has a DC voltage gain of [40 for Q/Q outputs and [200 for QHG/QHG outputs. 21. QHG/QHG and Q/Q outputs loaded with AC coupled 50 loads. VEEP and CS_SEL connected to VEE. 22. VINPP is the minimum differential Peak−to−Peak input swing for which AC parameters are guaranteed. 23. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs, (tpLH – tpHL). 24. Assumes 50% Input Duty Cycle. http://onsemi.com 8 NBLVEP16VR 9 800 8 700 7 600 6 500 5 400 4 300 3 200 2 100 1 0 0 500 1000 1500 2000 2500 3000 FREQUENCY (MHz) Figure 6. Fmax/Jitter for QHG, QHG Output 800 700 QHG/QHG VOUTpp (mV) 600 500 400 300 200 100 0 50 40 30 VINPP (mV) Figure 7. Differential Gain vs. Input Voltage (100 MHz) http://onsemi.com 9 20 JITTEROUT ps (RMS) VOUTpp (mV) Differential Inputs 900 NBLVEP16VR Zo = 50 QHG D Receiver Driver QHG D Zo = 50 50 VEEP (OPEN) 50 VTT VTT = VCC − 2.0 V Figure 8. Typical Termination for Output Driver VEEP Open (See Application Note AND8020 − Termination of ECL Logic Devices.) Zo = 50 QHG D *R Driver QHG Receiver D Zo = 50 *R = 2 Zo = 100 for 50 Transmission Lines VEEP VEE Figure 9. QHG/QHG Output Loading and Termination, VEEP = VEE. Zo = 50 Q D Receiver Driver Q Zo = 50 *R D *R = 2 Zo = 100 for 50 Transmission Lines VEE VEE CS_SEL (Open or Tied to VEE) VEE Figure 10. Q/Q Output Loading and Termination, CS_SEL Open or Tied to VEE or VCC http://onsemi.com 10 NBLVEP16VR Zo = 50 QHG 50 Driver QHG Oscilliscope Zo = 50 50 VEEP (OPEN) Figure 11. QHG/QHG Device Evaluation Set−up; VEEP = OPEN Zo = 50 QHG Driver 50 Oscilliscope QHG Zo = 50 50 VEEP VEE Figure 12. QHG/QHG Device Evaluation Set−up; VEEP = VEE Zo = 50 Q 50 Driver Q Oscilliscope Zo = 50 50 VEE VEE CS_SEL (Open or Tied to VEE) VEE Figure 13. Q/Q Device Evaluation Set−up; CS_SEL = VEE or OPEN http://onsemi.com 11 NBLVEP16VR VR 4.0 mA ea. Q CS_SEL VEE Q D D 1 QHG QHG 10 mA ea. 470 VBB Q Q 0 VBB VEEP VBB_ADJ OD_MODE LEN Q LATCH EN D EN_SEL LVCMOS/LVTTL Threshold Figure 14. Typical Application when a voltage is applied to it. Thus, when a change in the control voltage is applied to the control pin of the oscillator, it causes a change in the capacitance seen by the crystal internal to the oscillator. These changes in the circuit load capacitance cause changes in the oscillator output frequency due to crystal loading. The VCXO, or voltage controlled crystal oscillator, is an oscillator where the output frequency is controlled by the crystal and an external control voltage. The VCXO can have the output frequency change with a change in voltage at a control pin of the oscillator. Most, if not all, VCXO’s use varactor diodes to vary the frequency. A varactor diode is a semiconductor device that behaves as a variable capacitor Resource Reference of Application Notes AN1404 − ECLinPS Circuit Performance at Non−Standard VIH Levels AN1406 − Designing with LVPECL (ECL at +5.0 V) AND8002 − Marking and Date Codes AND8009 − ECLinPS Plus Spice I/O Model Kit AND8020 − Termination of ECL Logic Devices For an updated list of Application Notes, please see our website at http://onsemi.com. http://onsemi.com 12 NBLVEP16VR PACKAGE DIMENSIONS QFN−16 CASE 485G−01 ISSUE B D PIN 1 LOCATION ÇÇÇ ÇÇÇ ÇÇÇ 0.15 C NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. 5. Lmax CONDITION CAN NOT VIOLATE 0.2 MM MINIMUM SPACING BETWEEN LEAD TIP AND FLAG A B E DIM A A1 A3 b D D2 E E2 e K L TOP VIEW 0.15 C (A3) 0.10 C A 16 X 0.08 C SIDE VIEW SEATING PLANE A1 C D2 16X L 5 NOTE 5 e 4 16X 9 E2 K 12 1 16 16X e 13 b 0.10 C A B 0.05 C EXPOSED PAD 8 BOTTOM VIEW NOTE 3 SOLDERING FOOTPRINT 0.575 0.022 3.25 0.128 0.30 0.012 EXPOSED PAD 1.50 0.059 3.25 0.128 0.50 0.02 0.30 0.012 SCALE 10:1 http://onsemi.com 13 mm Ǔ ǒinches MILLIMETERS MIN MAX 0.80 1.00 0.00 0.05 0.20 REF 0.18 0.30 3.00 BSC 1.65 1.85 3.00 BSC 1.65 1.85 0.50 BSC 0.20 −−− 0.30 0.50 NBLVEP16VR ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Phone: 81−3−5773−3850 http://onsemi.com 14 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative. NBLVEP16VR/D