Freescale Semiconductor Technical Data Document Number: MW6IC2015N Rev. 3, 12/2008 RF LDMOS Wideband Integrated Power Amplifiers MW6IC2015NBR1 MW6IC2015GNBR1 The MW6IC2015N wideband integrated circuit is designed for base station applications. It uses Freescale’s newest High Voltage (26 to 32 Volts) LDMOS IC technology and integrates a multi - stage structure. Its wideband on - chip design makes it usable from 1805 to 1990 MHz. The linearity performances 1805 - 1990 MHz, 15 W, 26 V cover all modulation formats for cellular applications: GSM, GSM EDGE, PHS, GSM/GSM EDGE, CDMA TDMA, CDMA, W - CDMA and TD - SCDMA. RF LDMOS WIDEBAND Final Application INTEGRATED POWER AMPLIFIERS • Typical Two - Tone Performance: VDD = 26 Volts, IDQ1 = 100 mA, IDQ2 = 170 mA, Pout = 15 Watts PEP, f = 1930 MHz Power Gain — 26 dB Power Added Efficiency — 28% IMD — - 30 dBc CASE 1329 - 09 Driver Application TO - 272 WB - 16 • Typical GSM EDGE Performance: VDD = 26 Volts, IDQ1 = 130 mA, IDQ2 = PLASTIC 170 mA, Pout = 3 Watts Avg., Full Frequency Band (1805 - 1880 MHz or MW6IC2015NBR1 1930 - 1990 MHz) Power Gain — 27 dB Power Added Efficiency — 19% Spectral Regrowth @ 400 kHz Offset = - 69 dBc Spectral Regrowth @ 600 kHz Offset = - 78 dBc EVM — 0.8% rms CASE 1329A - 04 • Capable of Handling 3:1 VSWR, @ 26 Vdc, 1990 MHz, 15 Watts CW TO - 272 WB - 16 GULL Output Power PLASTIC • Stable into a 3:1 VSWR. All Spurs Below - 60 dBc @ 100 mW to 8 W CW MW6IC2015GNBR1 Pout. Features • Characterized with Series Equivalent Large - Signal Impedance Parameters and Common Source Scattering Parameters • On - Chip Matching (50 Ohm Input, DC Blocked, >5 Ohm Output) • Integrated Quiescent Current Temperature Compensation with Enable/Disable Function (1) • Integrated ESD Protection • Designed for Lower Memory Effects and Wide Instantaneous Bandwidth Applications • 225°C Capable Plastic Package • RoHS Compliant • In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel VDS1 RFin RFout/VDS2 VGS1 Quiescent Current Temperature Compensation (1) VGS2 Figure 1. Functional Block Diagram GND VDS1 NC NC NC 1 2 3 4 5 16 15 GND NC RFin 6 14 NC VGS1 VGS2 NC GND 7 8 9 10 11 RFout / VDS2 13 12 NC GND (Top View) Note: Exposed backside of the package is the source terminal for the transistors. Figure 2. Pin Connections 1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987. © Freescale Semiconductor, Inc., 2006-2008. All rights reserved. RF Device Data Freescale Semiconductor MW6IC2015NBR1 MW6IC2015GNBR1 1 Table 1. Maximum Ratings Symbol Value Unit Drain - Source Voltage Rating VDSS - 0.5, +68 Vdc Gate - Source Voltage VGS - 0.5, +6 Vdc Storage Temperature Range Tstg - 65 to +150 °C TC 150 °C Case Operating Temperature Operating Junction Temperature (1,2) Input Power TJ 225 °C Pin 20 dBm Symbol Value (2,3) Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Unit RθJC °C/W Final Application (Pout = 15 W CW) Stage 1, 26 Vdc, IDQ1 = 100 mA Stage 2, 26 Vdc, IDQ2 = 170 mA 4.3 1.2 Driver Application (Pout = 3 W CW) Stage 1, 26 Vdc, IDQ1 = 130 mA Stage 2, 26 Vdc, IDQ2 = 170 mA 4.3 1.3 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22 - A114) 1A (Minimum) Machine Model (per EIA/JESD22 - A115) A (Minimum) Charge Device Model (per JESD22 - C101) III (Minimum) Table 4. Moisture Sensitivity Level Test Methodology Per JESD 22 - A113, IPC/JEDEC J - STD - 020 Rating Package Peak Temperature Unit 3 260 °C Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Functional Tests (In Freescale 1930 - 1990 MHz Test Fixture, 50 ohm system) VDD = 26 Vdc, IDQ1 = 100 mA, IDQ2 = 170 mA, Pout = 15 W PEP, f1 = 1930 MHz, f2 = 1930.1 MHz, Two - Tone CW Power Gain Gps 24 26 — dB Power Added Efficiency PAE 26 28 — % Intermodulation Distortion IMD — - 30 - 27 dBc Input Return Loss IRL — — - 10 dB Typical Two - Tone Performances (In Freescale Test Fixture, 50 ohm system) VDD = 26 Vdc, IDQ1 = 100 mA, IDQ2 = 170 mA, Pout = 15 W PEP, 1805 - 1880 MHz, Two - Tone CW, 100 kHz Tone Spacing Power Gain Gps — 26 — dB Power Added Efficiency PAE — 28 — % Intermodulation Distortion IMD — - 30 — dBc Input Return Loss IRL — - 10 — dB 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. (continued) MW6IC2015NBR1 MW6IC2015GNBR1 2 RF Device Data Freescale Semiconductor Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 26 Vdc, IDQ1 = 100 mA, IDQ2 = 170 mA, 1805 - 1880 MHz and 1930 - 1990 MHz Saturated Pulsed Output Power, CW (8 μsec(on), 1 msec(off)) Psat — 35 — W Quiescent Current Accuracy over Temperature with 1.8 kΩ Gate Feed Resistors ( - 10 to 85°C) (1) ΔIQT — ±3 — % Gain Flatness in 30 MHz Bandwidth @ Pout = 3 W CW GF — 0.3 — dB Average Deviation from Linear Phase in 30 MHz Bandwidth @ Pout = 3 W CW Φ — ±1 — ° Delay — 2.7 — ns ΔΦ — ±15 — ° Average Group Delay @ Pout = 3 W CW Including Output Matching Part - to - Part Insertion Phase Variation @ Pout = 3 W CW, Six Sigma Window Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture, 50 ohm system) VDD = 26 Vdc, IDQ1 = 130 mA, IDQ2 = 170 mA, Pout = 3 W Avg., 1805 - 1990 MHz and 1930 - 1990 MHz EDGE Modulation Power Gain Gps — 27 — dB Power Added Efficiency PAE — 19 — % Error Vector Magnitude EVM — 0.8 — % Spectral Regrowth at 400 kHz Offset SR1 — - 69 — dBc Spectral Regrowth at 600 kHz Offset SR2 — - 78 — dBc 1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987. MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 3 VDD2 VDD1 C1 RF INPUT Z1 Z2 1 2 3 NC 4 NC 5 NC DUT 16 C2 NC 15 Z3 14 C3 Z8 Z4 Z5 C7 C9 C8 C10 Z6 Z7 RF OUTPUT 6 C11 C6 VGG1 7 NC 8 Quiescent Current Temperature Compensation 9 NC 13 10 NC R1 C14 VGG2 11 C12 C13 Z9 12 R2 C4 C5 C15 Z1* Z2 Z3 Z4 Z5 1.68″ 0.50″ 0.15″ 0.13″ 0.10″ x 0.08″ Microstrip x 0.08″ Microstrip x 0.04″ Microstrip x 0.35″ Microstrip x 0.35″ Microstrip Z6* Z7 Z8, Z9 PCB 0.61″ x 0.04″ Microstrip 1.30″ x 0.04″ Microstrip 1.18″ x 0.08″ Microstrip Taconic TLX8 - 0300, 0.030″, εr = 2.55 * Variable for tuning. Figure 3. MW6IC2015NBR1(GNBR1) Test Circuit Schematic — 1930 - 1990 MHz Table 6. MW6IC2015NBR1(GNBR1) Test Circuit Component Designations and Values — 1930 - 1990 MHz Part Description Part Number Manufacturer C1, C14, C15 2.2 μF Chip Capacitors C3225X5R1H225MT TDK C2, C4, C11 5.6 pF Chip Capacitors ATC100B5R6CT500XT ATC C3, C5 10 μF Chip Capacitors C5750X5R1H106MT TDK C6 1 pF Chip Capacitor ATC100B1R0BT500XT ATC C7, C8 2.2 pF Chip Capacitors ATC100B2R2BT500XT ATC C9, C10 0.5 pF Chip Capacitors ATC100B0R5BT500XT ATC C12 0.2 pF Chip Capacitor ATC100B0R2BT500XT ATC C13 0.1 pF Chip Capacitor ATC100B0R1BT500XT ATC R1 10 kΩ, 1/4 W Chip Resistor CRCW12061002FKEA Vishay R2 18 Ω, 1/4 W Chip Resistor CRCW120618R0FKEA Vishay MW6IC2015NBR1 MW6IC2015GNBR1 4 RF Device Data Freescale Semiconductor VDD1 C2 C3 VDD2 C1 C6 CUT OUT AREA MW6IC2015, Rev. 0 C7 C9 C11 C8 C12 C13 C10 C14 VGG1 R1 C15 R2 C4 VGG2 C5 Figure 4. MW6IC2015NBR1(GNBR1) Test Circuit Component Layout — 1930 - 1990 MHz MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 5 PAE, POWER ADDED EFFICIENCY (%) Gps, POWER GAIN (dB) 40 0 35 −10 PAE −20 30 Gps 25 −30 IRL −40 20 IMD 15 10 1900 VDD = 26 Vdc, Pout = 7.5 W (Avg.) IDQ1 = 100 mA, IDQ2 = 170 mA 100 kHz Tone Spacing 1920 1940 −50 1960 1980 −60 2000 IMD, INTERMODULATION DISTORTION (dBc) IRL, INPUT RETURN LOSS (dB) TYPICAL CHARACTERISTICS — 1930 - 1990 MHz f, FREQUENCY (MHz) 30 0 PAE, POWER ADDED EFFICIENCY (%) Gps, POWER GAIN (dB) Gps −10 25 20 IRL −20 −30 15 IMD 10 5 PAE 0 1900 −40 VDD = 26 Vdc, Pout = 1.5 W (Avg.) IDQ1 = 100 mA, IDQ2 = 170 mA 100 kHz Tone Spacing 1920 1940 −50 1960 1980 −60 2000 IMD, INTERMODULATION DISTORTION (dBc) IRL, INPUT RETURN LOSS (dB) Figure 5. Two - Tone Wideband Performance @ Pout = 7.5 Watts Avg. f, FREQUENCY (MHz) 31 Gps, POWER GAIN (dB) 30 29 28 27 IDQ1 = 130 mA IDQ2 = 170 mA IDQ1 = 100 mA IDQ2 = 210 mA IDQ1 = 100 mA IDQ2 = 170 mA IDQ1 = 100 mA IDQ2 = 130 mA IDQ1 = 70 mA IDQ2 = 170 mA 26 25 24 23 0.1 IMD, INTERMODULATION DISTORTION (dBc) Figure 6. Two - Tone Wideband Performance @ Pout = 1.5 Watts Avg. VDD = 26 Vdc Center Frequency = 1960 MHz 100 kHz Tone Spacing 1 10 30 −10 VDD = 26 Vdc IDQ1 = 100 mA, IDQ2 = 170 mA f = 1960 MHz, 100 kHz Tone Spacing −20 3rd Order −30 5th Order −40 −50 7th Order −60 −70 −80 0.1 1 10 Pout, OUTPUT POWER (WATTS) AVG. Pout, OUTPUT POWER (WATTS) PEP Figure 7. Two - Tone Power Gain versus Output Power Figure 8. Intermodulation Distortion Products versus Output Power 30 MW6IC2015NBR1 MW6IC2015GNBR1 6 RF Device Data Freescale Semiconductor 48 3rd Order 5th Order −50 −60 7th Order VDD = 26 Vdc, Pout = 75 W (PEP) IDQ1 = 100 mA, IDQ2 = 170 mA Two−Tone Measurements (f1 + f2)/2 = Center Frequency of 1960 MHz −70 −80 0.1 Ideal P3dB = 44.8 dBm (30 W) 46 P1dB = 44 dBm (25 W) 42 VDD = 26 Vdc IDQ1 = 100 mA, IDQ2 = 170 mA Pulsed CW, 8 μsec(on), 1 msec(off) f = 1960 MHz 40 38 1 100 10 10 15 TWO−TONE SPACING (MHz) 15 10 −45 −55 5 ACPR PAE 0 −60 10 1 0.1 30 Pout, OUTPUT POWER (WATTS) AVG. Figure 11. 2 - Carrier W - CDMA ACPR, IM3, Power Gain and Power Added Efficiency versus Output Power 50 −30_C PAE 20 10 0 10 Pout, OUTPUT POWER (WATTS) CW Figure 12. Power Gain and Power Added Efficiency versus CW Output Power 30 26 V 25_C Gps 1 −40 −50 85_C 22 0.1 −35 IM3 85_C 30 VDD = 26 Vdc IDQ1 = 100 mA IDQ2 = 170 mA f = 1960 MHz Gps 30 28 Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) 20 30 −30 2−Carrier W−CDMA 10 MHz Carrier Spacing 3.84 MHz Channel Bandwidth PAR = 8.5 dB @ 0.01% Probability (CCDF) 40 25_C 24 25 TC = −30_C 30 26 30 25 −25 VDD = 26 Vdc IDQ1 = 100 mA, IDQ2 = 170 mA f1 = 1955 MHz, f2 = 1965 MHz PAE, POWER ADDED EFFICIENCY (%) PAE, POWER ADDED EFFICIENCY (%), Gps, POWER GAIN (dB) 32 35 20 Pin, INPUT POWER (dBm) Figure 10. Pulsed CW Output Power versus Input Power Figure 9. Intermodulation Distortion Products versus Tone Spacing 28 Actual 44 IM3 (dBc), ACPR (dBc) −40 Pout, OUTPUT POWER (dBm) IMD, INTERMODULATION DISTORTION (dBc) TYPICAL CHARACTERISTICS — 1930 - 1990 MHz −30 30 V 26 28 V 24 VDD = 20 V 22 IDQ1 = 100 mA IDQ2 = 170 mA f = 1840 MHz 20 18 0 5 10 15 20 25 30 Pout, OUTPUT POWER (WATTS) CW Figure 13. Power Gain versus Output Power MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 7 TYPICAL CHARACTERISTICS — 1930 - 1990 MHz 28 −10 32 S21 TC = −30_C 26 −20 VDD = 26 Vdc Pout = 35 dBm CW IDQ1 = 100 mA IDQ2 = 170 mA 25 24 1850 1900 −25 Gps, POWER GAIN (dB) −15 S11 (dB) S21 (dB) 27 30 25_C 28 26 85_C 24 VDD = 26 Vdc, Pout = 7.5 W (Avg.) IDQ1 = 100 mA, IDQ2 = 170 mA Two−Tone Measurements, Center Frequency = 1960 MHz S11 1950 2000 22 1880 −30 2100 2050 1900 1920 f, FREQUENCY (MHz) 50 25_C 40 85_C 30 6 EVM PAE 4 20 10 2 0 0 1 10 30 SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc) TC = −30_C PAE, POWER ADDED EFFICIENCY (%) EVM, ERROR VECTOR MAGNITUDE (% ms) 10 8 1960 1980 2000 2020 Figure 15. Power Gain versus Frequency Figure 14. Broadband Frequency Response VDD = 26 Vdc IDQ1 = 100 mA IDQ2 = 170 mA f = 1960 MHz EDGE Modulation 1940 f, FREQUENCY (MHz) −50 25_C VDD = 26 Vdc, IDQ1 = 100 mA IDQ2 = 170 mA, f = 1960 MHz EDGE Modulation −55 TC = −30_C −60 SR @ 400 kHz −65 85_C −70 −75 −30_C SR @ 600 kHz −80 25_C 85_C −85 0.1 1 10 30 Pout, OUTPUT POWER (WATTS) AVG. Pout, OUTPUT POWER (WATTS) AVG. Figure 16. EVM and Power Added Efficiency versus Output Power Figure 17. Spectral Regrowth at 400 and 600 kHz versus Output Power MW6IC2015NBR1 MW6IC2015GNBR1 8 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS 109 MTTF (HOURS) 108 1st Stage 107 2nd Stage 106 105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 26 Vdc, Pout = 15 W PEP, and PAE = 28%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 18. MTTF versus Junction Temperature GSM TEST SIGNAL −10 −20 Reference Power VBW = 30 kHz Sweep Time = 70 ms RBW = 30 kHz −30 −40 (dB) −50 −60 −70 −80 400 kHz 400 kHz 600 kHz 600 kHz −90 −100 −110 Center 1.96 GHz 200 kHz Span 2 MHz Figure 19. EDGE Spectrum MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 9 f = 1930 MHz Zload f = 1990 MHz Zo = 25 Ω f = 1930 MHz f = 1990 MHz Zsource VDD = 26 Vdc, IDQ1 = 100 mA, IDQ2 = 170 mA, Pout = 15 W CW f MHz Zsource W Zload W 1930 23.37 - j21.93 1.62 + j0.26 1950 22.77 - j22.53 1.59 + j0.04 1970 22.19 - j22.20 1.57 - j0.16 1990 22.64 - j21.84 1.54 - j0.36 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 20. Series Equivalent Source and Load Impedance — 1930 - 1990 MHz MW6IC2015NBR1 MW6IC2015GNBR1 10 RF Device Data Freescale Semiconductor VDD2 VDD1 C1 RF INPUT Z1 Z2 1 2 3 NC 4 NC 5 NC DUT 16 C2 NC 15 Z3 14 C3 Z9 Z4 Z5 C7 C9 C8 C11 C10 Z6 Z7 Z8 RF OUTPUT 6 C6 VGG1 7 NC 8 Quiescent Current Temperature Compensation 9 NC 13 10 NC R1 C14 VGG2 11 C16 C12 C13 Z10 12 R2 C4 C5 C15 Z1* Z2 Z3 Z4 Z5 Z6* 1.64″ 0.54″ 0.15″ 0.13″ 0.10″ 0.26″ x 0.08″ Microstrip x 0.08″ Microstrip x 0.04″ Microstrip x 0.35″ Microstrip x 0.35″ Microstrip x 0.04″ Microstrip Z7* Z8 Z9, Z10 PCB 0.41″ x 0.04″ Microstrip 1.18″ x 0.04″ Microstrip 1.18″ x 0.08″ Microstrip Taconic TLX8 - 0300, 0.030″, εr = 2.55 * Variable for tuning. Figure 21. MW6IC2015NBR1(GNBR1) Test Circuit Schematic — 1805 - 1880 MHz Table 7. MW6IC2015NBR1(GNBR1) Test Circuit Component Designations and Values — 1805 - 1880 MHz Part Description Part Number Manufacturer C1, C14, C15 2.2 μF Chip Capacitors C3225X5R1H225MT TDK C2, C4, C11 5.6 pF Chip Capacitors ATC100B5R6CT500XT ATC C3, C5 10 μF Chip Capacitors C5750X5R1H106MT TDK C6 1.5 pF Chip Capacitor ATC100A1R5BT500XT ATC C7, C8 2.7 pF Chip Capacitors ATC100B2R7BT500XT ATC C9, C10, C12 0.8 pF Chip Capacitors ATC100B0R8BT500XT ATC C13 0.1 pF Chip Capacitor ATC100B0R1BT500XT ATC C16 1 pF Chip Capacitor ATC100B1R0BT500XT ATC R1 10 kΩ, 1/4 W Chip Resistor CRCW12061002FKEA Vishay R2 18 Ω, 1/4 W Chip Resistor CRCW120618R0FKEA Vishay MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 11 VDD1 C2 C3 VDD2 C1 C6 CUT OUT AREA MW6IC2015, Rev. 0 C7 C9 C11 C16 C8 C12 C13 C10 C14 R1 VGG1 C15 R2 C4 VGG2 C5 Figure 22. MW6IC2015NBR1(GNBR1) Test Circuit Component Layout — 1805 - 1880 MHz MW6IC2015NBR1 MW6IC2015GNBR1 12 RF Device Data Freescale Semiconductor PAE, POWER ADDED EFFICIENCY (%) Gps, POWER GAIN (dB) 32 0 IRL 31 30 −10 −20 PAE 29 −30 IMD −40 28 27 26 1800 Gps VDD = 26 Vdc, Pout = 7.5 W (Avg.) IDQ1 = 100 mA, IDQ2 = 170 mA 100 kHz Tone Spacing 1820 1860 1840 1880 −50 −60 1900 IMD, INTERMODULATION DISTORTION (dBc) IRL, INPUT RETURN LOSS (dB) TYPICAL CHARACTERISTICS — 1805 - 1880 MHz f, FREQUENCY (MHz) PAE, POWER ADDED EFFICIENCY (%) Gps, POWER GAIN (dB) 30 26 0 Gps −12 IRL 22 18 −24 VDD = 26 Vdc, Pout = 1.5 W (Avg.) IDQ1 = 100 mA, IDQ2 = 170 mA 100 kHz Tone Spacing IMD −36 14 −48 PAE 10 1800 1840 1820 1860 −60 1880 IMD, INTERMODULATION DISTORTION (dBc) IRL, INPUT RETURN LOSS (dB) Figure 23. Two - Tone Wideband Performance @ Pout = 7.5 Watts Avg. f, FREQUENCY (MHz) Figure 24. Two - Tone Wideband Performance @ Pout = 1.5 Watts Avg. Gps, POWER GAIN (dB) 31 30 29 28 IDQ1 = 130 mA IDQ2 = 170 mA IDQ1 = 100 mA IDQ2 = 210 mA IDQ1 = 100 mA IDQ2 = 170 mA IDQ1 = 100 mA IDQ2 = 130 mA IDQ1 = 70 mA IDQ2 = 170 mA 27 26 25 IMD, INTERMODULATION DISTORTION (dBc) 32 VDD = 26 Vdc Center Frequency = 1840 MHz 100 kHz Tone Spacing 24 0.1 1 10 30 −10 VDD = 26 Vdc IDQ1 = 100 mA, IDQ2 = 170 mA f = 1840 MHz, 100 kHz Tone Spacing −20 3rd Order −30 5th Order −40 −50 7th Order −60 −70 −80 0.1 1 10 Pout, OUTPUT POWER (WATTS) PEP Pout, OUTPUT POWER (WATTS) PEP Figure 25. Two - Tone Power Gain versus Output Power Figure 26. Intermodulation Distortion Products versus Output Power 30 MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 13 −30 48 Pout, OUTPUT POWER (dBm) 3rd Order −40 5th Order −50 VDD = 26 Vdc, Pout = 7.5 W (Avg.), IDQ1 = 100 mA IDQ2 = 170 mA, Two−Tone Measurements (f1 + f2)/2 = Center Frequency of 1840 MHz −60 7th Order −70 0.1 10 100 Actual 44 42 VDD = 26 Vdc IDQ1 = 100 mA, IDQ2 = 170 mA Pulsed CW, 8 μsec(on), 1 msec(off) f = 1840 MHz 40 15 20 25 30 Pin, INPUT POWER (dBm) Figure 27. Intermodulation Distortion Products versus Tone Spacing Figure 28. Pulsed CW Output Power versus Input Power 40 −20 VDD = 26 Vdc IDQ1 = 100 mA, IDQ2 = 170 mA f1 = 1835 MHz, f2 = 1845 MHz 30 −25 −30 Gps 2−Carrier W−CDMA 10 MHz Carrier Spacing 3.84 MHz Channel Bandwidth PAR = 8.5 dB @ 0.01% Probability (CCDF) 25 20 15 −35 −40 −45 10 −50 IM3 (dBc), ACPR (dBc) 35 IM3 5 −55 ACPR PAE 0 0.1 −60 1 10 30 Pout, OUTPUT POWER (WATTS) AVG. Figure 29. 2 - Carrier W - CDMA ACPR, IM3, Power Gain and Power Added Efficiency versus Output Power 50 30 40 25_C 85_C 25_C 30 PAE 20 26 Gps 85_C 24 10 VDD = 26 Vdc, IDQ1 = 100 mA IDQ2 = 170 mA, f = 1840 MHz 1 10 Pout, OUTPUT POWER (WATTS) CW Figure 30. Power Gain and Power Added Efficiency versus CW Output Power 0 30 30 V 28 V 28 Gps, POWER GAIN (dB) 30 PAE, POWER ADDED EFFICIENCY (%) TC = −30_C Gps, POWER GAIN (dB) P1dB = 44 dBm (25 W) 10 −30_C 22 0.1 P3dB = 44.7 dBm (30 W) 46 TWO−TONE SPACING (MHz) 32 28 Ideal 38 1 PAE, POWER ADDED EFFICIENCY (%), Gps, POWER GAIN (dB) IMD, INTERMODULATION DISTORTION (dBc) TYPICAL CHARACTERISTICS — 1805 - 1880 MHz 26 24 V 26 V 24 VDD = 20 V 22 IDQ1 = 100 mA IDQ2 = 170 mA f = 1840 MHz 20 18 0 5 10 15 20 25 Pout, OUTPUT POWER (WATTS) CW Figure 31. Power Gain versus Output Power MW6IC2015NBR1 MW6IC2015GNBR1 14 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — 1805 - 1880 MHz 34 26 −10 32 25 −15 24 −20 S21 (dB) S11 S21 23 −25 −30 22 VDD = 26 Vdc, Pout = 35 dBm CW 21 Gps, POWER GAIN (dB) −5 S11 (dB) 27 30 26 IDQ1 = 100 mA, IDQ2 = 170 mA 20 1600 1700 1800 1900 2000 85_C VDD = 26 Vdc, Pout = 7.5 W (Avg.) IDQ1 = 100 mA, IDQ2 = 170 mA Two−Tone Measurements, Center Frequency = 1840 MHz 22 1780 −40 2200 2100 25_C 28 24 −35 TC = −30_C 1800 1820 f, FREQUENCY (MHz) 50 −30_C 40 25_C 30 PAE 20 4 EVM 10 2 0 0 1 10 30 Pout, OUTPUT POWER (WATTS) AVG. Figure 34. EVM and Power Added Efficiency versus Output Power SPECTRAL REGROWTH @ 400 kHz AND 600 kHz (dBc) TC = 85_C PAE, POWER ADDED EFFICIENCY (%) EVM, ERROR VECTOR MAGNITUDE (% ms) 6 1880 1900 1920 f, FREQUENCY (MHz) 10 8 1860 Figure 33. Power Gain versus Frequency Figure 32. Broadband Frequency Response VDD = 26 Vdc IDQ1 = 100 mA IDQ2 = 170 mA f = 1840 MHz EDGE Modulation 1840 −50 VDD = 26 Vdc IDQ1 = 100 mA, IDQ2 = 170 mA f = 1840 MHz, EDGE Modulation −55 −60 TC = 25_C −30_C −30_C −65 SR @ 400 kHz 85_C −70 −75 25_C SR @ 600 kHz −80 85_C −85 0.1 1 10 30 Pout, OUTPUT POWER (WATTS) AVG. Figure 35. Spectral Regrowth at 400 and 600 kHz versus Output Power MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 15 Zo = 50 Ω f = 1800 MHz f = 1880 MHz Zload f = 1880 MHz Zsource f = 1800 MHz VDD = 26 Vdc, IDQ1 = 130 mA, IDQ2 = 170 mA, Pout = 3 W Avg. f MHz Zsource W Zload W 1800 24.32 - j26.99 1.94 - j1.29 1820 23.96 - j25.93 1.88 - j1.42 1840 23.86 - j25.63 1.83 - j1.54 1860 23.01 - j24.23 1.79 - j1.64 1880 23.55 - j23.33 1.74 - j1.75 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 36. Series Equivalent Source and Load Impedance — 1805 - 1880 MHz MW6IC2015NBR1 MW6IC2015GNBR1 16 RF Device Data Freescale Semiconductor TD - SCDMA CHARACTERIZATION VDD2 1 2 3 4 5 VDD1 C1 RF INPUT Z1 NC DUT NC 16 C2 NC 15 Z2 14 6 C3 Z9 NC NC NC Z3 C7 Z4 Z5 C9 Z6 Z7 Z8 RF OUTPUT C10 C6 7 NC 8 9 R1 VGG C12 10 11 NC C8 Quiescent Current Temperature Compensation NC 13 C11 Z10 NC 12 C14 R2 C4 C5 C13 Z1 Z2 Z3 Z4 Z5 0.772″ 0.409″ 0.138″ 0.148″ 0.064″ x 0.056″ Microstrip x 0.056″ Microstrip x 0.237″ Microstrip x 0.237″ Microstrip x 0.237″ Microstrip Z6 Z7 Z8 Z9, Z10 PCB 0.060″ x 0.237″ Microstrip 0.539″ x 0.056″ Microstrip 0.190″ x 0.056″ Microstrip 1.066″ x 0.078″ Microstrip Taconic TLX8, 0.020″, εr = 2.55 Figure 37. MW6IC2015NBR1(GNBR1) Test Circuit Schematic — TD - SCDMA Table 8. MW6IC2015NBR1(GNBR1) Test Circuit Component Designations and Values — TD - SCDMA Part Description Part Number Manufacturer C1, C3, C5, C14 2.2 μF Chip Capacitors C3225X5R1H225MT TDK C2, C4, C10 5.6 pF Chip Capacitors 08051J5R6CBS AVX C6 1 pF Chip Capacitor 08051J1R0BBS AVX C7, C8 2.7 pF Chip Capacitors 08051J2R7CBS AVX C9, C11 0.5 pF Chip Capacitors 08051J0R5BBS AVX C12, C13 100 nF Chip Capacitors C1206CK104K5RC Kemet R1, R2 5 kΩ Potentiometer CMS Cermet Multi - turn 3224W Bourns MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 17 VDD1 VDD2 C3 C2 MW6IC2015NB, Rev. 1 C1 C7 C9 C11 C10 C6 C8 C12 C13 C4 C14 C5 R1 R2 VGG Figure 38. MW6IC2015NBR1(GNBR1) Test Circuit Component Layout — TD - SCDMA MW6IC2015NBR1 MW6IC2015GNBR1 18 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS −20 −25 ALT/ACPR (dBc) −30 3.5 3 PAE −35 2.5 −40 2 Adj−U −45 1.5 Adj−L −50 1 Alt−L −55 0.5 Alt−U −60 15 19 17 21 23 25 PAE, POWER ADDED EFFICIENCY (%) 4 3−Carrier TD−SCDMA VDD1 = VDD2 = 28 V IDQ1 = 150 mA, IDQ2 = 160 mA f = 2017.5 MHz 0 27 Pout, OUTPUT POWER (dBm) AVG. Figure 39. 3 - Carrier TD - SCDMA ACPR, ALT and Power Added Efficiency versus Output Power −20 −25 ALT/ACPR (dBc) −30 3.5 3 PAE −35 2.5 −40 2 −45 Alt−L Adj−L 1.5 −50 1 Adj−U −55 0.5 Alt−U −60 15 17 19 21 23 PAE, POWER ADDED EFFICIENCY (%) 4 6−Carrier TD−SCDMA VDD1 = VDD2 = 28 V IDQ1 = 150 mA, IDQ2 = 160 mA f = 2017.5 MHz 0 27 25 Pout, OUTPUT POWER (dBm) AVG. Figure 40. 6 - Carrier TD - SCDMA ACPR, ALT and Power Added Efficiency versus Output Power TD - SCDMA TEST SIGNAL −30 −30 1.28 MHz Channel BW −40 −50 −50 −60 −70 +ALT2 in 1.28 MHz BW +3.2 MHz Offset −ALT2 in 1.28 MHz BW −3.2 MHz Offset −80 −90 −100 −ALT2 in 1.28 MHz BW −3.2 MHz Offset +ALT2 in 1.28 MHz BW +3.2 MHz Offset −100 −110 −120 (dBm) (dBm) −90 VBW = 300 kHz Sweep Time = 200 ms RBW = 30 kHz −60 −70 −80 1.28 MHz Channel BW −40 VBW = 300 kHz Sweep Time = 200 ms RBW = 30 kHz −110 +ALT1 in 1.28 MHz BW +1.6 MHz Offset −ALT1 in 1.28 MHz BW −1.6 MHz Offset −130 Center 2.0175 GHz 1.5 MHz Span 15 MHz f, FREQUENCY (MHz) Figure 41. 3 - Carrier TD - SCDMA Spectrum −120 −ALT1 in 1.28 MHz BW −1.6 MHz Offset −130 Center 2.0175 GHz +ALT1 in 1.28 MHz BW +1.6 MHz Offset 2.5 MHz Span 25 MHz f, FREQUENCY (MHz) Figure 42. 6 - Carrier TD - SCDMA Spectrum MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 19 Zo = 50 Ω Zload Zsource f = 2070 MHz f = 2070 MHz f = 1950 MHz f = 1950 MHz VDD = 28 Vdc, IDQ1 = 150 mA, IDQ2 = 160 mA f MHz Zsource W Zload W 1950 25.25 + j0.19 1.78 + j0.33 1960 25.16 + j0.34 1.75 + j0.43 1970 25.07 + j0.49 1.72 + j0.54 1980 24.98 + j0.64 1.68 + j0.67 1990 24.89 + j0.79 1.65 + j0.78 2000 24.80 + j0.94 1.63 + j0.89 2010 24.71 + j1.09 1.62 + j1.00 2020 24.63 + j1.25 1.61 + j1.09 2030 24.54 + j1.40 1.58 + j1.19 2040 24.45 + j1.56 1.55 + j1.31 2050 24.37 + j1.71 1.50 + j1.43 2060 24.28 + j1.87 1.48 + j1.62 2070 24.20 + j2.03 1.46 + j1.65 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 43. Series Equivalent Input and Load Impedance — TD - SCDMA MW6IC2015NBR1 MW6IC2015GNBR1 20 RF Device Data Freescale Semiconductor PACKAGE DIMENSIONS MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 21 MW6IC2015NBR1 MW6IC2015GNBR1 22 RF Device Data Freescale Semiconductor MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 23 MW6IC2015NBR1 MW6IC2015GNBR1 24 RF Device Data Freescale Semiconductor MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 25 MW6IC2015NBR1 MW6IC2015GNBR1 26 RF Device Data Freescale Semiconductor PRODUCT DOCUMENTATION Refer to the following documents to aid your design process. Application Notes • AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages • AN1955: Thermal Measurement Methodology of RF Power Amplifiers • AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family • AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family • AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over - Molded Plastic Packages Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices REVISION HISTORY The following table summarizes revisions to this document. Revision Date 2 Feb. 2007 Description • Added “and TD - SCDMA” to data sheet description paragraph, p. 1. • Updated verbiage on Typical Performances table, p. 2 • Corrected VBIAS and VSUPPLY callouts, Figs. 3 and 21, Test Circuit Schematic, p. 4, 11, Figs. 4 and 22, Test Circuit Component Layout, p. 5, 12 • Updated Part Numbers in Tables 6 and 7, Component Designations and Values, to RoHS compliant part numbers, p. 4, 11 • Adjusted scale for Figs. 7 and 25, Two - Tone Power Gain versus Output Power, Figs. 8 and 26, Intermodulation Distortion Products versus Output Power, Figs. 11 and 29, 2 - Carrier W - CDMA ACPR, IM3, Power Gain and Power Added Efficiency versus Output Power, Figs. 12 and 30, Power Gain and Power Added Efficiency versus CW Output Power, Figs. 16 and 34, EVM and Power Added Efficiency versus Output Power, Figs. 17 and 35, Spectral Regrowth at 400 and 600 kHz versus Output Power, to better match the device’s capabilities, p. 6 - 8, 13 - 15 • Replaced Figure 18, MTTF versus Junction Temperature with updated graph. Removed Amps2 and listed operating characteristics and location of MTTF calculator for device, p. 9 • Corrected Series Impedance data table test conditions, Figs. 20 and 36, p. 10, 16 • Added TD - SCDMA test circuit schematic, component designations and values, component layout, typical characteristic curves, test signal and series impedance, p. 17 - 20. • Added Product Documentation and Revision History, p. 27 3 Dec. 2008 • Modified data sheet to reflect RF Test Reduction described in Product and Process Change Notification number, PCN13232, p. 1, 2 • Changed 220°C to 225°C in Capable Plastic Package bullet, p. 1 • Added Footnote 1 to Quiescent Current Temperature bullet under Features section and to callout in Fig. 1, Functional Block Diagram, p. 1 • Changed Storage Temperature Range in Max Ratings table from - 65 to +200 to - 65 to +150 for standardization across products, p. 2 • Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150°C, p. 2 • Operating Junction Temperature increased from 200°C to 225°C in Maximum Ratings table and related “Continuous use at maximum temperature will affect MTTF” footnote added, p. 2 • Updated Part Numbers in Tables 6, 7, and 8 Component Designations and Values, to latest RoHS compliant part numbers, p. 4, 11, 17 • Removed lower voltage tests from Figs. 13 and 31, Power Gain versus Output Power, due to fixed tuned fixture limitations, p. 7, 14 • Adjust scale for Fig. 27, Intermodulation Distortion Products versus Tone Spacing, to show wider dynamic range, p. 14 • Replaced Case Outline 1329A - 03 with 1329A - 04, Issue F, p. 1, 24 - 26. Added pin numbers 1 through 17. Corrected mm dimension L for gull - wing foot from 4.90 - 5.06 Min - Max to 0.46 - 0.61 Min - Max. Corrected L1 mm dimension from .025 BSC to 0.25 BSC. Added JEDEC Standard Package Number. • Replaced Case Outline 1329 - 09, Issue L, with 1329 - 09, Issue M, p. 21 - 23. Added pin numbers 1 through 17. MW6IC2015NBR1 MW6IC2015GNBR1 RF Device Data Freescale Semiconductor 27 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800 - 441 - 2447 or +1 - 303 - 675 - 2140 Fax: +1 - 303 - 675 - 2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006-2008. All rights reserved. MW6IC2015NBR1 MW6IC2015GNBR1 Document Number: MW6IC2015N Rev. 3, 12/2008 28 RF Device Data Freescale Semiconductor