Freescale Semiconductor Technical Data Document Number: MW7IC3825N Rev. 1, 11/2010 RF LDMOS Wideband Integrated Power Amplifiers The MW7IC3825N wideband integrated circuit is designed with on--chip matching that makes it usable from 3400 -- 3600 MHz. This multi -- stage structure is rated for 26 to 32 Volt operation and covers all typical cellular base station modulation formats. • Typical WiMAX Performance: VDD = 28 Volts, IDQ1 = 130 mA, IDQ2 = 230 mA, Pout = 5 Watts Avg., f = 3600 MHz, OFDM 802.16d, 64 QAM 3/4, 4 Bursts, 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. Power Gain — 25 dB Power Added Efficiency — 15% Device Output Signal PAR — 8.5 dB @ 0.01% Probability on CCDF ACPR @ 8.5 MHz Offset — --48 dBc in 1 MHz Channel Bandwidth Driver Applications • Typical WiMAX Performance: VDD = 28 Volts, IDQ1 = 190 mA, IDQ2 = 230 mA, Pout = 0.5 Watts Avg., f = 3400 and 3600 MHz, OFDM 802.16d, 64 QAM 3/4, 4 Bursts, 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. Power Gain — 23.5 dB Power Added Efficiency — 3.5% Device Output Signal PAR — 9.2 dB @ 0.01% Probability on CCDF ACPR @ 8.5 MHz Offset — --55 dBc in 1 MHz Channel Bandwidth • Capable of Handling 10:1 VSWR, @ 32 Vdc, 3500 MHz, 25 Watts CW Output Power • Stable into a 5:1 VSWR. All Spurs Below --60 dBc @ 0 to 44 dBm CW Pout • Typical Pout @ 1 dB Compression Point ≃ 30 Watts CW Features • 100% PAR Tested for Guaranteed Output Power Capability • Characterized with Series Equivalent Large--Signal Impedance Parameters and Common Source S--Parameters • On--Chip Matching (50 Ohm Input, RF Choke to Ground) • Integrated Quiescent Current Temperature Compensation with Enable/Disable Function (1) • Integrated ESD Protection • Greater Negative Gate--Source Voltage Range for Improved Class C Operation • 225°C Capable Plastic Package • RoHS Compliant • In Tape and Reel. R1 Suffix = 500 Units, 44 mm Tape Width, 13 inch Reel. VDS1 RFin RFout/VDS2 VGS1 Quiescent Current Temperature Compensation (1) VGS2 Figure 1. Functional Block Diagram MW7IC3825NR1 MW7IC3825GNR1 MW7IC3825NBR1 3400--3600 MHz, 5 W AVG., 28 V WiMAX RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS CASE 1886--01 TO--270 WB--16 PLASTIC MW7IC3825NR1 CASE 1887--01 TO--270 WB--16 GULL PLASTIC MW7IC3825GNR1 CASE 1329--09 TO--272 WB--16 PLASTIC MW7IC3825NBR1 GND VDS1 VGS2 VGS1 NC 1 2 3 4 5 16 15 GND NC RFin 6 14 RFout/VDS2 NC VGS1 VGS2 VDS1 GND 7 8 9 10 11 13 12 NC GND (Top View) Note: Exposed backside of the package is the source terminal for the transistors. Figure 2. Pin Connections 1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf.Select Documentation/Application Notes -- AN1977 or AN1987. © Freescale Semiconductor, Inc., 2008, 2010. All rights reserved. RF Device Data Freescale Semiconductor MW7IC3825NR1 MW7IC3825GNR1 MW7IC3825NBR1 1 Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDS --0.5, +65 Vdc Gate--Source Voltage VGS --6.0, +10 Vdc Operating Voltage VDD 32, +0 Vdc Storage Temperature Range Tstg -- 65 to +150 °C Case Operating Temperature TC 150 °C Operating Junction Temperature (1,2) TJ 225 °C Input Power Pin 45 dBm Symbol Value (2,3) Unit Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case WiMAX Application (Case Temperature 71°C, Pout = 5 W CW) RθJC °C/W Stage 1, 28 Vdc, IDQ1 = 130 mA Stage 2, 28 Vdc, IDQ2 = 230 mA 4.7 1.3 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 1B (Minimum) Machine Model (per EIA/JESD22--A115) A (Minimum) Charge Device Model (per JESD22--C101) IV (Minimum) Table 4. Moisture Sensitivity Level Test Methodology Per JESD22--A113, IPC/JEDEC J--STD--020 Rating Package Peak Temperature Unit 3 260 °C Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate--Source Leakage Current (VGS = 1.5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 25 μAdc) VGS(th) 1.2 2 2.7 Vdc Gate Quiescent Voltage (VDS = 28 Vdc, IDQ1 = 130 mA) VGS(Q) — 2.7 — Vdc Fixture Gate Quiescent Voltage (4) (VDD = 28 Vdc, IDQ1 = 130 mA, Measured in Functional Test) VGG(Q) 3.5 4.2 5 Vdc Stage 1 -- Off Characteristics Stage 1 -- On Characteristics 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955. 4. VGG = 1.55 x VGS(Q). Parameter measured on Freescale Test Fixture, due to resistive divider network on the board. Refer to Test Circuit schematic. (continued) MW7IC3825NR1 MW7IC3825GNR1 MW7IC3825NBR1 2 RF Device Data Freescale Semiconductor Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate--Source Leakage Current (VGS = 1.5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 120 μAdc) VGS(th) 1.2 2 2.7 Vdc Gate Quiescent Voltage (VDS = 28 Vdc, IDQ2 = 230 mA) VGS(Q) — 2.7 — Vdc Fixture Gate Quiescent Voltage (1) (VDD = 28 Vdc, IDQ2 = 230 mA, Measured in Functional Test) VGG(Q) 2.5 3.3 4 Vdc Drain--Source On--Voltage (VGS = 10 Vdc, ID = 1 Adc) VDS(on) 0.2 0.5 1.2 Vdc Coss — 72.3 — pF Stage 2 -- Off Characteristics Stage 2 -- On Characteristics Stage 2 -- Dynamic Characteristics (2) Output Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Functional Tests (3) (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 230 mA, Pout = 5 W Avg., f = 3600 MHz, WiMAX, OFDM 802.16d, 64 QAM 3/4, 4 Bursts, 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. ACPR measured in 1 MHz Channel Bandwidth @ ±8.5 MHz Offset. Power Gain Gps 21 25 32 dB Power Added Efficiency PAE 12 15 — % Output Peak--to--Average Ratio @ 0.01% Probability on CCDF PAR 7.5 8.5 — dB ACPR — --48 --45 dBc IRL — --12 --6 dB Adjacent Channel Power Ratio Input Return Loss Typical Performances OFDM Signal -- 10 MHz Channel Bandwidth (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 230 mA, Pout = 5 W Avg., f = 3400 MHz and f = 3600 MHz, WiMAX, OFDM 802.16d, 64 QAM 3/4, 4 Bursts, 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. Relative Constellation Error (4) Error Vector Magnitude (4) RCE — --33 — dB EVM — 2.2 — % rms 1. VGG = 1.22 x VGS(Q). Parameter measured on Freescale Test Fixture, due to resistive divider network on the board. Refer to Test Circuit schematic. 2. Part internally matched both on input and output. 3. Measurement made with device in straight lead configuration before any lead forming operation is applied. 4. RCE = 20Log(EVM/100). (continued) MW7IC3825NR1 MW7IC3825GNR1 MW7IC3825NBR1 RF Device Data Freescale Semiconductor 3 Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 230 mA, 3400--3600 MHz Bandwidth Pout @ 1 dB Compression Point, CW P1dB — 30 — — 83 — W IMD Symmetry @ 2 W PEP, Pout where IMD Third Order Intermodulation 30 dBc (Delta IMD Third Order Intermodulation between Upper and Lower Sidebands > 2 dB) IMDsym VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) VBWres — 90 — MHz Gain Flatness in 200 MHz Bandwidth @ Pout = 5 W Avg. GF — 0.7 — dB Average Deviation from Linear Phase in 200 MHz Bandwidth @ Pout = 25 W CW Φ — 3.15 — ° Delay — 3.21 — ns Part--to--Part Insertion Phase Variation @ Pout = 25 W CW, f = 3500 MHz, Six Sigma Window ∆Φ — 13.88 — ° Gain Variation over Temperature (--30°C to +85°C) ∆G — 0.046 — dB/°C ∆P1dB — 0.015 — dB/°C Average Group Delay @ Pout = 25 W CW, f = 3500 MHz Output Power Variation over Temperature (--30°C to +85°C) MHz Typical Driver Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 190 mA, IDQ2 = 230 mA, Pout = 0.5 W Avg., f = 3400 MHz and f = 3600 MHz, WiMAX, OFDM 802.16d, 64 QAM 3/4, 4 Bursts, 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. ACPR measured in 1 MHz Channel Bandwidth @ ±8.5 MHz Offset. Power Gain Gps — 23.5 — dB Power Added Efficiency PAE — 3.5 — % Output Peak--to--Average Ratio @ 0.01% Probability on CCDF Adjacent Channel Power Ratio Input Return Loss PAR — 9.2 — dB ACPR — --55 — dBc IRL — --12 — dB MW7IC3825NR1 MW7IC3825GNR1 MW7IC3825NBR1 4 RF Device Data Freescale Semiconductor VD1 C1 RF INPUT C6 Z1 Z2 Z4 Z6 Z8 Z10 Z12 Z3 Z5 Z7 Z9 Z11 1 2 3 4 5 C5 C7 C17 Z13 VG1 C16 16 NC 15 VGS2 VGS1 NC 14 7 8 9 C14 10 VD1 11 R1 VG2 DUT 6 NC C15 NC Quiescent Current Temperature Compensation NC 13 12 R2 C13 C9 VD2 + C4 Z42 C3 C2 C12 Z41 Z26 Z25 Z40 Z15 Z16 Z17 Z18 Z19 Z14 Z20 Z21 Z43 Z23 Z24 Z28 Z29 Z22 Z27 Z30 C8 Z31 Z33 Z36 Z32 Z34 RF Z37 OUTPUT Z38 Z39 Z35 Z44 Z45 C10 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 Z14 Z15 Z16 0.118″ x 0.044″ Microstrip 0.205″ x 0.044″ Microstrip 0.083″ x 0.096″ Microstrip 0.195″ x 0.044″ Microstrip 0.094″ x 0.132″ Microstrip 0.509″ x 0.044″ Microstrip 0.083″ x 0.091″ Microstrip 0.372″ x 0.044″ Microstrip 0.078″ x 0.192″ Microstrip 0.078″ x 0.044″ Microstrip 0.079″ x 0.141″ Microstrip 0.243″ x 0.044″ Microstrip 0.605″ x 0.044″ Microstrip 0.232″ x 0.340″ Microstrip 0.042″ x 0.340″ Microstrip 0.112″ x 0.150″ Microstrip Z17 Z18 Z19 Z20 Z21 Z22 Z23 Z24 Z25 Z26 Z27 Z28 Z29 Z30 Z31 C11 R3 0.230″ x 0.090″ Microstrip 0.125″ x 0.125″ Microstrip 0.228″ x 0.100″ Microstrip 0.076″ x 0.165″ Microstrip 0.289″ x 0.100″ Microstrip 0.083″ x 0.110″ Microstrip 0.375″ x 0.100″ Microstrip 0.185″ x 0.080″ Microstrip 0.079″ x 0.020″ Microstrip 0.185″ x 0.020″ Microstrip 0.185″ x 0.100″ Microstrip 0.093″ x 0.100″ Microstrip 0.063″ x 0.044″ Microstrip 0.103″ x 0.044″ Microstrip 0.080″ x 0.121″ Microstrip Z32 Z33 Z34 Z35 Z36 Z37 Z38 Z39 Z40 Z41 Z42 Z43 Z44 Z45 PCB 0.080″ x 0.112″ Microstrip 0.193″ x 0.044″ Microstrip 0.080″ x 0.051″ Microstrip 0.157″ x 0.055″ Microstrip 0.080″ x 0.044″ Microstrip 0.080″ x 0.131″ Microstrip 0.040″ x 0.044″ Microstrip 0.073″ x 0.044″ Microstrip 0.574″ x 0.044″ Microstrip L = 0.305″ wi = 0.150″ Angle = 130° Microstrip 0.523″ x 0.044″ Microstrip 0.574″ x 0.044″ Microstrip L = 0.305″ wi = 0.150″ Angle = 130° Microstrip 0.523″ x 0.044″ Microstrip Taconic TLX8--0300, 0.020″, εr = 2.55 Figure 3. MW7IC3825NR1(GNR1)(NBR1) Test Circuit Schematic MW7IC3825NR1 MW7IC3825GNR1 MW7IC3825NBR1 RF Device Data Freescale Semiconductor 5 Table 6. MW7IC3825NR1(GNR1)(NBR1) Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C13, C14 2.2 μF, 50 V Chip Capacitors C3225X7R1H225M TDK C2, C3 10 μF, 50 V Chip Capacitors C5750X5R1H106M TDK C4, C5, C9, C10 2.2 pF Chip Capacitors ATC100B2R2BT500XT ATC C6, C7 0.5 pF Chip Capacitors ATC100B0R5BT500XT ATC C8 2 pF Chip Capacitor ATC100B2R0BT500XT ATC C11 33 pF Chip Capacitor ATC100B330JT500XT ATC C12 220 μF, 63 V Electrolytic Capacitor 222213668221 BC Components C15, C16 4.7 μF, 50 V Chip Capacitors C4532X5R1H475M TDK C17 0.3 pF Chip Capacitor ATC100B0R3BT500XT ATC R1, R2 1 kΩ, 1/8 W Chip Resistors CRCW08051001FKEA Vishay R3 10 Ω, 1/4 W Chip Resistor CRCW120610R0FKEA Vishay VD2 VD1 C12 C2 MW7IC3825N/NB Rev. 7 C3 C4 C1 C6 C7 C17 C9 C13 C15 C14 CUT OUT AREA C5 C8 C10 R1 VG1 R2 VG2 C16 VD1 R3 C11 Figure 4. MW7IC3825NR1(GNR1)(NBR1) Test Circuit Component Layout MW7IC3825NR1 MW7IC3825GNR1 MW7IC3825NBR1 6 RF Device Data Freescale Semiconductor 24.6 15 hD Gps 24.4 14 24.2 PARC 24 23.8 23.6 --7 --45 --8 --46 IRL ACPR --44 --47 --48 23.4 23.2 3400 3425 3450 3475 3500 3525 3550 3575 --49 3600 --9 --10 --11 --12 0 --0.5 --1 --1.5 --2 PARC (dB) Gps, POWER GAIN (dB) 24.8 IRL, INPUT RETURN LOSS (dB) 25 18 VDD = 28 Vdc, Pout = 5 W (Avg.), IDQ1 = 130 mA, IDQ2 = 230 mA 17 OFDM 802.16d, 64 QAM 3/4, 4 Bursts, 10 MHz Channel Bandwidth Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF 16 ACPR (dBc) 25.2 ηD, DRAIN EFFICIENCY (%) TYPICAL CHARACTERISTICS --2.5 f, FREQUENCY (MHz) 25 24.8 1 hD Gps 0 PARC 24.6 --54 --7 24.4 --55 --8 24.2 --56 24 IRL --57 ACPR 23.8 23.6 3400 --58 3425 3450 3475 3500 3525 3550 3575 ACPR (dBc) Gps, POWER GAIN (dB) 25.2 4 VDD = 28 Vdc, Pout = 20 dBm (Avg.), IDQ1 = 130 mA, IDQ2 = 230 mA 3 OFDM 802.16d, 64 QAM 3/4, 4 Bursts, 10 MHz Channel Bandwidth 2 Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF --59 3600 --9 --10 --11 --12 --0 --0.5 --1 --1.5 --2 PARC (dB) 25.4 IRL, INPUT RETURN LOSS (dB) 25.6 ηD, DRAIN EFFICIENCY (%) Figure 5. WiMAX Broadband Performance @ Pout = 5 Watts Avg. --2.5 f, FREQUENCY (MHz) Figure 6. WiMAX Broadband Performance @ Pout = 20 dBm Avg. 26 IDQ2 = 350 mA 290 mA 25 Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) 25 26 VDD = 28 Vdc IDQ1 = 130 mA f = 3500 MHz 24 230 mA 23 175 mA 22 110 mA 24 20 160 mA 130 mA 23 100 mA 22 21 21 VDD = 28 Vdc IDQ2 = 230 mA f = 3500 MHz IDQ1 = 195 mA 70 mA 20 1 10 100 1 10 Pout, OUTPUT POWER (WATTS) CW Pout, OUTPUT POWER (WATTS) CW Figure 7. Power Gain versus Output Power @ IDQ1 = 130 mA Figure 8. Power Gain versus Output Power @ IDQ2 = 230 mA 100 MW7IC3825NR1 MW7IC3825GNR1 MW7IC3825NBR1 RF Device Data Freescale Semiconductor 7 IMD, INTERMODULATION DISTORTION (dBc) TYPICAL CHARACTERISTICS --10 VDD = 28 Vdc, Pout = 2 W (PEP), IDQ1 = 130 mA IDQ2 = 230 mA, Two--Tone Measurements (f1 + f2)/2 = Center Frequency of 3500 MHz --20 IM3--L --30 IM3--U IM5--L --40 IM5--U IM7--U --50 IM7--L --60 0.1 100 10 1 TWO--TONE SPACING (MHz) Figure 9. Intermodulation Distortion Products versus Tone Spacing 23.5 23 22.5 PARC --1 30 ηD --1 dB = 6 W --2 25 ACPR --2 dB = 8.5 W --3 dB = 11.5 W --3 20 --4 --5 22 Gps 0 40 VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 230 mA f = 3500 MHz, OFDM 802.16d 35 64 QAM 3/4, 4 Bursts 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF 1 9 5 13 17 21 --20 --25 --30 --35 ACPR (dBc) 24 1 ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 24.5 PARC OUTPUT COMPRESSION AT 0.01% PROBABILITY ON CCDF (dB) 25 --40 15 --45 10 --50 Pout, OUTPUT POWER (WATTS) 60 VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 230 mA f = 3500 MHz, OFDM 802.16d, 64 QAM 3/4 50 4 Bursts, 10 MHz Channel Bandwidth 25_C Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF 40 85_C 30 Gps TC = --30_C 20 25_C 85_C 10 0 --20 --25 --30_C --30_C 25_C ηD 85_C --35 --40 ACPR 1 --30 10 ACPR (dBc) ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB) Figure 10. Output Peak--to--Average Ratio Compression (PARC) versus Output Power --45 --50 100 Pout, OUTPUT POWER (WATTS) AVG. WiMAX Figure 11. WiMAX, ACPR, Power Gain and Drain Efficiency versus Output Power MW7IC3825NR1 MW7IC3825GNR1 MW7IC3825NBR1 8 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS 30 10 S21 5 108 15 0 10 --5 5 --10 S11 0 --15 --5 --20 --10 --25 --15 VDD = 28 Vdc IDQ1 = 130 mA, IDQ2 = 230 mA --20 --25 2400 2600 2800 3000 3200 3400 3600 3800 4000 2nd Stage MTTF (HOURS) 20 S11 (dB) 25 S21 (dB) 109 15 107 106 1st Stage 105 --30 --35 104 --40 4200 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) f, FREQUENCY (MHz) Figure 12. Broadband Frequency Response This above graph displays calculated MTTF in hours when the device is operated at VDD = 28 Vdc, Pout = 5 W Avg., and PAE = 15%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 13. MTTF versus Junction Temperature WIMAX TEST SIGNAL 100 --10 10 --20 --30 1 --40 0.1 (dB) PROBABILITY (%) Input Signal 0.01 OFDM 802.16d, 64 QAM 3/4, 4 Bursts 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF 0.001 0.0001 10 MHz Channel BW 0 2 4 6 --50 --60 --70 8 PEAK--TO--AVERAGE (dB) Figure 14. OFDM 802.16d Test Signal 10 --80 --90 --20 ACPR in 1 MHz Integrated BW --15 --10 ACPR in 1 MHz Integrated BW --5 0 5 10 15 20 f, FREQUENCY (MHz) Figure 15. WiMAX Spectrum Mask Specifications MW7IC3825NR1 MW7IC3825GNR1 MW7IC3825NBR1 RF Device Data Freescale Semiconductor 9 Zo = 50 Ω f = 3600 MHz Zload f = 3400 MHz f = 3400 MHz Zsource f = 3600 MHz VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 230 mA, Pout = 5 W Avg. f MHz Zsource Ω Zload Ω 3400 31.82 -- j19.29 4.58 -- j7.62 3425 32.86 -- j19.70 4.42 -- j7.33 3450 33.95 -- j20.93 4.22 -- j7.20 3475 35.11 -- j22.97 4.13 -- j7.22 3500 36.33 -- j25.82 4.13 -- j7.26 3525 37.61 -- j29.49 4.07 -- j7.20 3550 38.95 -- j33.97 3.81 -- j6.99 3575 40.35 -- j39.26 3.48 -- j6.77 3600 41.81 -- j45.37 3.21 -- j6.72 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 16. Series Equivalent Source and Load Impedance MW7IC3825NR1 MW7IC3825GNR1 MW7IC3825NBR1 10 RF Device Data Freescale Semiconductor Table 7. Common Source S--Parameters (VDD = 28 V, IDQ1 = 130 mA, IDQ2 = 230 mA, TA = 25°C, 50 Ohm System) S11 S21 S12 S22 f MHz |S11| ∠φ |S21| ∠φ |S12| ∠φ |S22| ∠φ 3000 0.260 --47.0 7.550 --61.6 0.00485 --43.9 0.724 --87.7 3050 0.177 --63.4 8.610 --102.0 0.00423 --72.7 0.713 --113.0 3100 0.139 --68.0 10.000 --143.0 0.00424 --98.1 0.675 --141.0 3150 0.117 --59.6 11.300 177.0 0.00293 --122.0 0.612 --166.0 3200 0.190 --61.1 13.600 139.0 0.00322 --98.2 0.627 171.0 3250 0.283 --85.6 16.800 95.7 0.00533 --118.0 0.629 138.0 3300 0.395 --118.0 19.900 49.1 0.00762 --146.0 0.547 102.0 3350 0.493 --155.0 22.300 0.9 0.00950 --178.0 0.421 65.9 3400 0.575 166.0 24.000 --48.3 0.0116 148.0 0.235 23.1 3450 0.603 126.0 23.800 --99.4 0.0132 111.0 0.053 --130.0 3500 0.537 82.8 19.900 --155.0 0.0135 58.2 0.409 124.0 3550 0.479 56.7 15.600 165.0 0.00994 27.0 0.509 80.6 3600 0.458 29.8 12.900 128.0 0.00810 1.1 0.585 49.7 3650 0.465 1.3 11.200 94.1 0.00680 --19.7 0.637 21.3 3700 0.427 --27.1 9.830 58.3 0.00636 --42.4 0.672 --4.3 3750 0.429 --53.0 8.600 25.7 0.00546 --65.7 0.707 --28.9 3800 0.407 --81.6 7.770 --7.2 0.00476 --82.1 0.730 --53.8 3850 0.395 --110.0 7.020 --39.8 0.00445 --97.7 0.752 --77.2 3900 0.388 --139.0 6.380 --71.8 0.00421 --113.0 0.761 --102.0 3950 0.384 --167.0 5.900 --104.0 0.00454 --126.0 0.779 --125.0 4000 0.389 165.0 5.460 --135.0 0.00531 --145.0 0.779 --150.0 MW7IC3825NR1 MW7IC3825GNR1 MW7IC3825NBR1 RF Device Data Freescale Semiconductor 11 ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS 53 53 50 49 Ideal P3dB = 47.45 dBm (55.6 W) 51 52 Pout, OUTPUT POWER (dBm) Pout, OUTPUT POWER (dBm) 52 P1dB = 46.66 dBm (46.3 W) 48 Actual 47 46 45 VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 230 mA Pulsed CW, 10 μsec(on), 10% Duty Cycle f = 3400 MHz 44 43 16 17 18 19 20 21 22 23 24 25 26 27 51 Ideal P3dB = 47.11 dBm (51.5 W) 50 49 P1dB = 46.13 dBm (41.0 W) 48 Actual 47 46 45 VDD = 28 Vdc, IDQ1 = 130 mA, IDQ2 = 230 mA Pulsed CW, 10 μsec(on), 10% Duty Cycle f = 3600 MHz 44 28 43 18 19 20 Pin, INPUT POWER (dBm) 21 22 23 24 25 26 27 28 29 30 Pin, INPUT POWER (dBm) NOTE: Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 V NOTE: Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 V Test Impedances per Compression Level Test Impedances per Compression Level P1dB Zsource Ω Zload Ω 52.4 -- j42.5 3.5 -- j8.5 Figure 17. Pulsed CW Output Power versus Input Power @ 28 V @ 3400 MHz P1dB Zsource Ω Zload Ω 126.6 -- j41.9 3.3 -- j8.3 Figure 18. Pulsed CW Output Power versus Input Power @ 28 V @ 3600 MHz MW7IC3825NR1 MW7IC3825GNR1 MW7IC3825NBR1 12 RF Device Data Freescale Semiconductor PACKAGE DIMENSIONS MW7IC3825NR1 MW7IC3825GNR1 MW7IC3825NBR1 RF Device Data Freescale Semiconductor 13 MW7IC3825NR1 MW7IC3825GNR1 MW7IC3825NBR1 14 RF Device Data Freescale Semiconductor MW7IC3825NR1 MW7IC3825GNR1 MW7IC3825NBR1 RF Device Data Freescale Semiconductor 15 MW7IC3825NR1 MW7IC3825GNR1 MW7IC3825NBR1 16 RF Device Data Freescale Semiconductor MW7IC3825NR1 MW7IC3825GNR1 MW7IC3825NBR1 RF Device Data Freescale Semiconductor 17 MW7IC3825NR1 MW7IC3825GNR1 MW7IC3825NBR1 18 RF Device Data Freescale Semiconductor MW7IC3825NR1 MW7IC3825GNR1 MW7IC3825NBR1 RF Device Data Freescale Semiconductor 19 MW7IC3825NR1 MW7IC3825GNR1 MW7IC3825NBR1 20 RF Device Data Freescale Semiconductor MW7IC3825NR1 MW7IC3825GNR1 MW7IC3825NBR1 RF Device Data Freescale Semiconductor 21 PRODUCT DOCUMENTATION AND SOFTWARE Refer to the following documents and software to aid your design process. Application Notes • AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages • AN1955: Thermal Measurement Methodology of RF Power Amplifiers • AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family • AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family • AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over--Molded Plastic Packages Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator • RF High Power Model For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 Nov. 2008 • Initial Release of Data Sheet 1 Nov. 2010 • Corrected data sheet to remove “DC Block” from On--chip Matching feature bullet and replaced with “RF Choke to Ground”, p. 1 • Modified data sheet to reflect RF Test Reduction described in Product and Process Change Notification number, PCN13628, p. 1, 3 • Added “RF Input Choke to Ground” circuitry to Functional Block Diagram and Test Circuit Schematic, p. 1, 5 • Added Electromigration MTTF Calculator and RF High Power Model availability to Product Software, p. 22 MW7IC3825NR1 MW7IC3825GNR1 MW7IC3825NBR1 22 RF Device Data Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1--800--521--6274 or +1--480--768--2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1--8--1, Shimo--Meguro, Meguro--ku, Tokyo 153--0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1--800--441--2447 or +1--303--675--2140 Fax: +1--303--675--2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008, 2010. All rights reserved. MW7IC3825NR1 MW7IC3825GNR1 MW7IC3825NBR1 Document Number: RF Device Data MW7IC3825N Rev. 1, 11/2010 Freescale Semiconductor 23