Data Sheet

Freescale Semiconductor
Technical Data
Document Number: MMRF1320N
Rev. 0, 7/2015
RF Power LDMOS Transistors
MMRF1320N
MMRF1320GN
High Ruggedness N--Channel
Enhancement--Mode Lateral MOSFETs
These high ruggedness devices are designed for use in high VSWR defense
a n d c o m m e r c i a l r a d i o c o m m u n i c a t i o n s a n d H F, V H F a n d U H F r a d a r
applications. The unmatched input and output designs allow wide frequency
range utilization, from 1.8 to 600 MHz.
Typical Performance: VDD = 50 Vdc
Frequency
(MHz)
Signal Type
Pout
(W)
Gps
(dB)
D
(%)
230
CW
150
26.3
72.0
230
Pulse
(100 sec, 20%
Duty Cycle)
150 Peak
26.1
70.3
Pin
(W)
Test
Voltage
Result
0.62 Peak
(3 dB
Overdrive)
50
1.8–600 MHz, 150 W CW, 50 V
WIDEBAND
RF POWER LDMOS TRANSISTORS
TO--270WB--4
PLASTIC
MMRF1320N
Load Mismatch/Ruggedness
Frequency
(MHz)
230
Signal Type
VSWR
Pulse
(100 sec, 20%
Duty Cycle)
> 65:1
at all
Phase
Angles
No Device
Degradation
TO--270WBG--4
PLASTIC
MMRF1320GN
Features






Wide operating frequency range
Extreme ruggedness
Unmatched input and output allowing wide frequency range utilization
Integrated stability enhancements
Low thermal resistance
Integrated ESD protection circuitry
Gate A 3
2 Drain A
Gate B 4
1 Drain B
(Top View)
Note: Exposed backside of the package is
the source terminal for the transistors.
Figure 1. Pin Connections
 Freescale Semiconductor, Inc., 2015. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
MMRF1320N MMRF1320GN
1
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
–0.5, +133
Vdc
Gate--Source Voltage
VGS
–6.0, +10
Vdc
Storage Temperature Range
Tstg
–65 to +150
C
Case Operating Temperature Range
TC
–40 to +150
C
Operating Junction Temperature Range (1,2)
TJ
–40 to +225
C
Total Device Dissipation @ TC = 25C
Derate above 25C
PD
952
4.76
W
W/C
Symbol
Value (2,3)
Unit
Thermal Resistance, Junction to Case
CW: Case Temperature 80C, 150 W CW, 50 Vdc, IDQ(A+B) = 100 mA, 230 MHz
RJC
0.21
C/W
Thermal Impedance, Junction to Case
Pulse: Case Temperature 66C, 150 W Peak, 100 sec Pulse Width,
20% Duty Cycle, 50 Vdc, IDQ(A+B) = 100 mA, 230 MHz
ZJC
0.04
C/W
Table 2. Thermal Characteristics
Characteristic
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
2, passes 2500 V
Machine Model (per EIA/JESD22--A115)
B, passes 250 V
Charge Device Model (per JESD22--C101)
IV, passes 1200 V
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22--A113, IPC/JEDEC J--STD--020
Rating
Package Peak Temperature
Unit
3
260
C
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted)
Characteristic
Off Characteristics
Symbol
Min
Typ
Max
Unit
IGSS
—
—
1
Adc
133
139
—
Vdc
(4)
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
Drain--Source Breakdown Voltage
(VGS = 0 Vdc, ID = 50 mAdc)
V(BR)DSS
Zero Gate Voltage Drain Leakage Current
(VDS = 50 Vdc, VGS = 0 Vdc)
IDSS
—
—
5
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 100 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Gate Threshold Voltage (4)
(VDS = 10 Vdc, ID = 480 Adc)
VGS(th)
1.8
2.4
2.8
Vdc
Gate Quiescent Voltage
(VDD = 50 Vdc, ID = 100 mAdc, Measured in Functional Test)
VGS(Q)
2.3
2.8
3.3
Vdc
Drain--Source On--Voltage (4)
(VGS = 10 Vdc, ID = 1 Adc)
VDS(on)
—
0.26
—
Vdc
On Characteristics
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf/calculators.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf and search for AN1955.
4. Each side of device measured separately.
(continued)
MMRF1320N MMRF1320GN
2
RF Device Data
Freescale Semiconductor, Inc.
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Reverse Transfer Capacitance
(VDS = 50 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
0.8
—
pF
Output Capacitance
(VDS = 50 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
45.4
—
pF
Input Capacitance
(VDS = 50 Vdc, VGS = 0 Vdc  30 mV(rms)ac @ 1 MHz)
Ciss
—
96.7
—
pF
Dynamic Characteristics (1)
Functional Tests (2) (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 150 W Peak (30 W Avg.),
f = 230 MHz, 100 sec Pulse Width, 20% Duty Cycle
Power Gain
Gps
25.0
26.1
27.5
dB
Drain Efficiency
D
68.0
70.3
—
%
Input Return Loss
IRL
—
–16
–9
dB
Load Mismatch/Ruggedness (In Freescale Test Fixture) 50 ohm system, IDQ(A+B) = 100 mA
Frequency
(MHz)
230
Signal Type
VSWR
Pin
(W)
Pulse
(100 sec, 20% Duty Cycle)
> 65:1
at all Phase Angles
0.62 Peak
(3 dB Overdrive)
Test Voltage, VDD
Result
50
No Device Degradation
Table 6. Ordering Information
Device
MMRF1320NR1
MMRF1320GNR1
Tape and Reel Information
R1 Suffix = 500 Units, 44 mm Tape Width, 13--inch Reel
Package
TO--270WB--4
TO--270WBG--4
1. Each side of device measured separately.
2. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull
wing (GN) parts.
MMRF1320N MMRF1320GN
RF Device Data
Freescale Semiconductor, Inc.
3
TYPICAL CHARACTERISTICS
300
Ciss
Coss
NORMALIZED VGS(Q)
C, CAPACITANCE (pF)
100
10
Crss
1
0
10
20
30
40
1.01
1
0.99
50
VDD = 50 Vdc
IDQ(A+B) = 100 mA
1300 mA
0.98
0.97
0.96
0.95
0.94
--50
Measured with 30 mV(rms)ac @ 1 MHz
VGS = 0 Vdc
0.1
1.06
1.05 300 mA
1.04
1.03
800 mA
1.02
--25
0
25
50
75
100
TC, CASE TEMPERATURE (C)
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
Note: Each side of device measured separately.
IDQ (mA)
Figure 2. Capacitance versus Drain--Source Voltage
Slope (mV/C)
100
–2.466
300
–2.058
800
–2.015
1300
–1.877
Figure 3. Normalized VGS versus Quiescent
Current and Case Temperature
108
MTTF (HOURS)
VDD = 50 Vdc
ID = 3.36 Amps
107
106
4.14 Amps
4.97 Amps
105
104
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (C)
Note: MTTF value represents the total cumulative operating time
under indicated test conditions.
MTTF calculator available at http://www.freescale.com/rf/calculators.
Figure 4. MTTF versus Junction Temperature -- CW
MMRF1320N MMRF1320GN
4
RF Device Data
Freescale Semiconductor, Inc.
230 MHz NARROWBAND PRODUCTION TEST FIXTURE
C3 C5
B1
C7
MMRF1320N
Rev. 1
C29
C27
C21 C23
D57619
C1
C25
COAX1
L1 C12
L3
C9
C16
C14
COAX3
C10
CUT OUT AREA
C20
C11
COAX2
L2
C19
C31
C15
C17
COAX4
L4
C13
C18
C26
C2
B2
C8
C22 C24
C28
C30
C4 C6
Figure 5. MMRF1320N Narrowband Test Circuit Component Layout — 230 MHz
MMRF1320N MMRF1320GN
RF Device Data
Freescale Semiconductor, Inc.
5
230 MHz NARROWBAND PRODUCTION TEST FIXTURE
Table 7. MMRF1320N Narrowband Test Circuit Component Designations and Values — 230 MHz
Part
Description
Part Number
Manufacturer
B1, B2
Small Ferrite Beads, Surface Mount
2743019447
Fair-Rite
C1, C2
22 F, 35 V Tantalum Capacitors
T491X226K035AT
Kemet
C3, C4, C23, C24
0.1 F Chip Capacitors
CDR33BX104AKWS
AVX
C5, C6
220 nF Chip Capacitors
C1812C224K5RACTU
Kemet
C7, C8
2.2 F Chip Capacitors
C1825C225J5RACTU
Kemet
C9
2.2 pF Chip Capacitor
ATC100B2R2JT500XT
ATC
C10, C11
18 pF Chip Capacitors
ATC100B180JT500XT
ATC
C12, C13
330 pF Chip Capacitors
ATC100B331JT200XT
ATC
C14, C15
39 pF Chip Capacitors
ATC100B390JT500XT
ATC
C16, C17
15 pF Chip Capacitors
ATC100B150JT500XT
ATC
C18, C19
1000 pF Chip Capacitors
ATC100B102JT50XT
ATC
C20
82 pF Chip Capacitor
ATC100B820JT500XT
ATC
C21, C22
0.10 F Chip Capacitors
C1812F104K1RACTU
Kemet
C25, C26
2.2 F Chip Capacitors
2225X7R225KT3AB
ATC
C27, C28, C29, C30
470 F, 63 V Electrolytic Capacitors
MCGPR63V477M13X26-RH
Multicomp
C31
36 pF Chip Capacitor
ATC100B360JT500XT
ATC
Coax1, 2, 3, 4
25  SemiRigid Coax, 2.4 Shield Length
UT-141C-25
Micro-Coax
L1, L2
3 Turns, 12 nH Inductors
GA3094-ALC
Coilcraft
L3, L4
4 Turns, 17.5 nH Inductors
GA3095-ALC
Coilcraft
PCB
Arlon AD255A, 0.030, r = 2.55
D57619
MTL
MMRF1320N MMRF1320GN
6
RF Device Data
Freescale Semiconductor, Inc.
MMRF1320N MMRF1320GN
RF Device Data
Freescale Semiconductor, Inc.
7
RF
INPUT
Z1
C2
C1
B2
Z3
Z2
B1
C6
C11
C10
C5
C8
Z13
Z11
Z9
Z7
Z6
Z8
Z10
Z12
C7
L2
C13
Z15
Z14
C12
L1
DUT
Z23
Z21
Z19
Z17
Z16
Z18
Z20
Z22
L4
Z25
Z24
C17
C15
C14
C16
C22
C19
C18
C21
0.690  0.120 Microstrip
0.134  0.120 Microstrip
0.395  0.120 Microstrip
0.125  0.058 Microstrip
0.450  0.058 Microstrip
Z2, Z3
Z4, Z5
Z6, Z7
Z8*, Z9*
Z10, Z11
Description
0.366  0.082 Microstrip
Z1
Microstrip
C24
Z27
Z26
C23
C26
Z29
C20
Z28
C25
C28
+
C27
+
Microstrip
Z22, Z23
Z20, Z21
Z18, Z19
Z16, Z17
Z14, Z15
Z12, Z13
Description
0.400  0.150 Microstrip
0.422  0.150 Microstrip
0.112  0.289 Microstrip
0.289  0.393 Microstrip
0.439  0.746 Microstrip
0.210  0.068 Microstrip
Microstrip
C30
+
C31
Z31
0.102  0.082 Microstrip
0.262  0.082 Microstrip
0.144  0.230 Microstrip
0.093  0.230 Microstrip
1.090  0.230 Microstrip
Description
VDD
COAX4
Z30
* Line length include microstrip bends
Z31
Z30
Z28, Z29
Z26, Z27
Z24, Z25
VDD
COAX3
C29
+
Figure 6. MMRF1320N Narrowband Test Circuit Schematic — 230 MHz
C4
Z4
Z5
C9
C3
L3
Table 8. MMRF1320N Narrowband Test Circuit Microstrips — 230 MHz
VGG
+
COAX2
COAX1
VGG
+
RF
OUTPUT
TYPICAL CHARACTERISTICS — 230 MHz
Pout, OUTPUT POWER (WATTS) PEAK
180
VDD = 50 Vdc, f = 230 MHz
Pulse Width = 100 sec, 20% Duty Cycle
160
140
120
100
Pin = 0.34 W
80
60
Pin = 0.17 W
40
20
0
0
0.5
1.5
1
2
2.5
3
3.5
VGS, GATE--SOURCE VOLTAGE (VOLTS)
Figure 7. Output Power versus Gate--Source
Voltage at a Constant Input Power
VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz
30 Pulse Width = 100 sec, 20% Duty Cycle
50
48
Gps, POWER GAIN (dB)
Pout, OUTPUT POWER (dBm) PEAK
90
31
52
46
44
42
40
38
VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz
Pulse Width = 100 sec, 20% Duty Cycle
36
34
12
14
16
18
20
22
24
26
28
70
IDQ(A+B) = 900 mA
28
60
600 mA
27
50
300 mA
26
25
40
900 mA
600 mA
100 mA
30
300 mA
24
Gps
100 mA
23
10
32
30
29
80
D
20
10
300
100
Pin, INPUT POWER (dBm)
D, DRAIN EFFICIENCY (%)
54
Pout, OUTPUT POWER (WATTS) PEAK
f
(MHz)
P1dB
(W)
P3dB
(W)
230
159
182
Figure 9. Power Gain and Drain Efficiency
versus Output Power and Quiescent Current
Figure 8. Output Power versus Input Power
VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz
Pulse Width = 100 sec, 20% Duty Cycle
27
25_C 70
26
60
25
50
TC = --40_C
85_C
24
40
23
30
25_C
22
Gps
D
85_C
21
1
10
100
20
10
300
IDQ(A+B) = 100 mA, f = 230 MHz
Pulse Width = 100 sec, 20% Duty Cycle
28
80
27
Gps, POWER GAIN (dB)
Gps, POWER GAIN (dB)
28
29
90
--40_C
D, DRAIN EFFICIENCY (%)
29
26
25
24
23
50 V
22
45 V
21
40 V
20
19
VDD = 30 V
0
50
35 V
100
150
Pout, OUTPUT POWER (WATTS) PEAK
Pout, OUTPUT POWER (WATTS) PEAK
Figure 10. Power Gain and Drain Efficiency
versus Output Power
Figure 11. Power Gain versus Output Power
and Drain--Source Voltage
200
MMRF1320N MMRF1320GN
8
RF Device Data
Freescale Semiconductor, Inc.
230 MHz NARROWBAND PRODUCTION TEST FIXTURE
f
MHz
Zsource

Zload

230
6.2 + j17.7
12.1 + j12.5
Zsource = Test circuit impedance as measured from
gate to gate, balanced configuration.
Zload
50 
Input
Matching
Network
= Test circuit impedance as measured from
drain to drain, balanced configuration.
+
-Zsource
Device
Under
Test
--
Output
Matching
Network
50 
+
Zload
Figure 12. Narrowband Series Equivalent Source and Load Impedance — 230 MHz
MMRF1320N MMRF1320GN
RF Device Data
Freescale Semiconductor, Inc.
9
PACKAGE DIMENSIONS
MMRF1320N MMRF1320GN
10
RF Device Data
Freescale Semiconductor, Inc.
MMRF1320N MMRF1320GN
RF Device Data
Freescale Semiconductor, Inc.
11
MMRF1320N MMRF1320GN
12
RF Device Data
Freescale Semiconductor, Inc.
MMRF1320N MMRF1320GN
RF Device Data
Freescale Semiconductor, Inc.
13
MMRF1320N MMRF1320GN
14
RF Device Data
Freescale Semiconductor, Inc.
MMRF1320N MMRF1320GN
RF Device Data
Freescale Semiconductor, Inc.
15
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS
Refer to the following resources to aid your design process.
Application Notes
 AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
 EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
 Electromigration MTTF Calculator
To Download Resources Specific to a Given Part Number:
1. Go to http://www.freescale.com/rf
2. Search by part number
3. Click part number link
4. Choose the desired resource from the drop down menu
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
July 2015
Description
 Initial Release of Data Sheet
MMRF1320N MMRF1320GN
16
RF Device Data
Freescale Semiconductor, Inc.
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their
respective owners.
E 2015 Freescale Semiconductor, Inc.
MMRF1320N MMRF1320GN
Document
Number:
RF
Device
Data MMRF1320N
Rev. 0, 7/2015Semiconductor, Inc.
Freescale
17