Freescale Semiconductor Technical Data Document Number: MMRF1320N Rev. 0, 7/2015 RF Power LDMOS Transistors MMRF1320N MMRF1320GN High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs These high ruggedness devices are designed for use in high VSWR defense a n d c o m m e r c i a l r a d i o c o m m u n i c a t i o n s a n d H F, V H F a n d U H F r a d a r applications. The unmatched input and output designs allow wide frequency range utilization, from 1.8 to 600 MHz. Typical Performance: VDD = 50 Vdc Frequency (MHz) Signal Type Pout (W) Gps (dB) D (%) 230 CW 150 26.3 72.0 230 Pulse (100 sec, 20% Duty Cycle) 150 Peak 26.1 70.3 Pin (W) Test Voltage Result 0.62 Peak (3 dB Overdrive) 50 1.8–600 MHz, 150 W CW, 50 V WIDEBAND RF POWER LDMOS TRANSISTORS TO--270WB--4 PLASTIC MMRF1320N Load Mismatch/Ruggedness Frequency (MHz) 230 Signal Type VSWR Pulse (100 sec, 20% Duty Cycle) > 65:1 at all Phase Angles No Device Degradation TO--270WBG--4 PLASTIC MMRF1320GN Features Wide operating frequency range Extreme ruggedness Unmatched input and output allowing wide frequency range utilization Integrated stability enhancements Low thermal resistance Integrated ESD protection circuitry Gate A 3 2 Drain A Gate B 4 1 Drain B (Top View) Note: Exposed backside of the package is the source terminal for the transistors. Figure 1. Pin Connections Freescale Semiconductor, Inc., 2015. All rights reserved. RF Device Data Freescale Semiconductor, Inc. MMRF1320N MMRF1320GN 1 Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDSS –0.5, +133 Vdc Gate--Source Voltage VGS –6.0, +10 Vdc Storage Temperature Range Tstg –65 to +150 C Case Operating Temperature Range TC –40 to +150 C Operating Junction Temperature Range (1,2) TJ –40 to +225 C Total Device Dissipation @ TC = 25C Derate above 25C PD 952 4.76 W W/C Symbol Value (2,3) Unit Thermal Resistance, Junction to Case CW: Case Temperature 80C, 150 W CW, 50 Vdc, IDQ(A+B) = 100 mA, 230 MHz RJC 0.21 C/W Thermal Impedance, Junction to Case Pulse: Case Temperature 66C, 150 W Peak, 100 sec Pulse Width, 20% Duty Cycle, 50 Vdc, IDQ(A+B) = 100 mA, 230 MHz ZJC 0.04 C/W Table 2. Thermal Characteristics Characteristic Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2, passes 2500 V Machine Model (per EIA/JESD22--A115) B, passes 250 V Charge Device Model (per JESD22--C101) IV, passes 1200 V Table 4. Moisture Sensitivity Level Test Methodology Per JESD22--A113, IPC/JEDEC J--STD--020 Rating Package Peak Temperature Unit 3 260 C Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) Characteristic Off Characteristics Symbol Min Typ Max Unit IGSS — — 1 Adc 133 139 — Vdc (4) Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Drain--Source Breakdown Voltage (VGS = 0 Vdc, ID = 50 mAdc) V(BR)DSS Zero Gate Voltage Drain Leakage Current (VDS = 50 Vdc, VGS = 0 Vdc) IDSS — — 5 Adc Zero Gate Voltage Drain Leakage Current (VDS = 100 Vdc, VGS = 0 Vdc) IDSS — — 10 Adc Gate Threshold Voltage (4) (VDS = 10 Vdc, ID = 480 Adc) VGS(th) 1.8 2.4 2.8 Vdc Gate Quiescent Voltage (VDD = 50 Vdc, ID = 100 mAdc, Measured in Functional Test) VGS(Q) 2.3 2.8 3.3 Vdc Drain--Source On--Voltage (4) (VGS = 10 Vdc, ID = 1 Adc) VDS(on) — 0.26 — Vdc On Characteristics 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf/calculators. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf and search for AN1955. 4. Each side of device measured separately. (continued) MMRF1320N MMRF1320GN 2 RF Device Data Freescale Semiconductor, Inc. Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Reverse Transfer Capacitance (VDS = 50 Vdc 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 0.8 — pF Output Capacitance (VDS = 50 Vdc 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 45.4 — pF Input Capacitance (VDS = 50 Vdc, VGS = 0 Vdc 30 mV(rms)ac @ 1 MHz) Ciss — 96.7 — pF Dynamic Characteristics (1) Functional Tests (2) (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 150 W Peak (30 W Avg.), f = 230 MHz, 100 sec Pulse Width, 20% Duty Cycle Power Gain Gps 25.0 26.1 27.5 dB Drain Efficiency D 68.0 70.3 — % Input Return Loss IRL — –16 –9 dB Load Mismatch/Ruggedness (In Freescale Test Fixture) 50 ohm system, IDQ(A+B) = 100 mA Frequency (MHz) 230 Signal Type VSWR Pin (W) Pulse (100 sec, 20% Duty Cycle) > 65:1 at all Phase Angles 0.62 Peak (3 dB Overdrive) Test Voltage, VDD Result 50 No Device Degradation Table 6. Ordering Information Device MMRF1320NR1 MMRF1320GNR1 Tape and Reel Information R1 Suffix = 500 Units, 44 mm Tape Width, 13--inch Reel Package TO--270WB--4 TO--270WBG--4 1. Each side of device measured separately. 2. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts. MMRF1320N MMRF1320GN RF Device Data Freescale Semiconductor, Inc. 3 TYPICAL CHARACTERISTICS 300 Ciss Coss NORMALIZED VGS(Q) C, CAPACITANCE (pF) 100 10 Crss 1 0 10 20 30 40 1.01 1 0.99 50 VDD = 50 Vdc IDQ(A+B) = 100 mA 1300 mA 0.98 0.97 0.96 0.95 0.94 --50 Measured with 30 mV(rms)ac @ 1 MHz VGS = 0 Vdc 0.1 1.06 1.05 300 mA 1.04 1.03 800 mA 1.02 --25 0 25 50 75 100 TC, CASE TEMPERATURE (C) VDS, DRAIN--SOURCE VOLTAGE (VOLTS) Note: Each side of device measured separately. IDQ (mA) Figure 2. Capacitance versus Drain--Source Voltage Slope (mV/C) 100 –2.466 300 –2.058 800 –2.015 1300 –1.877 Figure 3. Normalized VGS versus Quiescent Current and Case Temperature 108 MTTF (HOURS) VDD = 50 Vdc ID = 3.36 Amps 107 106 4.14 Amps 4.97 Amps 105 104 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (C) Note: MTTF value represents the total cumulative operating time under indicated test conditions. MTTF calculator available at http://www.freescale.com/rf/calculators. Figure 4. MTTF versus Junction Temperature -- CW MMRF1320N MMRF1320GN 4 RF Device Data Freescale Semiconductor, Inc. 230 MHz NARROWBAND PRODUCTION TEST FIXTURE C3 C5 B1 C7 MMRF1320N Rev. 1 C29 C27 C21 C23 D57619 C1 C25 COAX1 L1 C12 L3 C9 C16 C14 COAX3 C10 CUT OUT AREA C20 C11 COAX2 L2 C19 C31 C15 C17 COAX4 L4 C13 C18 C26 C2 B2 C8 C22 C24 C28 C30 C4 C6 Figure 5. MMRF1320N Narrowband Test Circuit Component Layout — 230 MHz MMRF1320N MMRF1320GN RF Device Data Freescale Semiconductor, Inc. 5 230 MHz NARROWBAND PRODUCTION TEST FIXTURE Table 7. MMRF1320N Narrowband Test Circuit Component Designations and Values — 230 MHz Part Description Part Number Manufacturer B1, B2 Small Ferrite Beads, Surface Mount 2743019447 Fair-Rite C1, C2 22 F, 35 V Tantalum Capacitors T491X226K035AT Kemet C3, C4, C23, C24 0.1 F Chip Capacitors CDR33BX104AKWS AVX C5, C6 220 nF Chip Capacitors C1812C224K5RACTU Kemet C7, C8 2.2 F Chip Capacitors C1825C225J5RACTU Kemet C9 2.2 pF Chip Capacitor ATC100B2R2JT500XT ATC C10, C11 18 pF Chip Capacitors ATC100B180JT500XT ATC C12, C13 330 pF Chip Capacitors ATC100B331JT200XT ATC C14, C15 39 pF Chip Capacitors ATC100B390JT500XT ATC C16, C17 15 pF Chip Capacitors ATC100B150JT500XT ATC C18, C19 1000 pF Chip Capacitors ATC100B102JT50XT ATC C20 82 pF Chip Capacitor ATC100B820JT500XT ATC C21, C22 0.10 F Chip Capacitors C1812F104K1RACTU Kemet C25, C26 2.2 F Chip Capacitors 2225X7R225KT3AB ATC C27, C28, C29, C30 470 F, 63 V Electrolytic Capacitors MCGPR63V477M13X26-RH Multicomp C31 36 pF Chip Capacitor ATC100B360JT500XT ATC Coax1, 2, 3, 4 25 SemiRigid Coax, 2.4 Shield Length UT-141C-25 Micro-Coax L1, L2 3 Turns, 12 nH Inductors GA3094-ALC Coilcraft L3, L4 4 Turns, 17.5 nH Inductors GA3095-ALC Coilcraft PCB Arlon AD255A, 0.030, r = 2.55 D57619 MTL MMRF1320N MMRF1320GN 6 RF Device Data Freescale Semiconductor, Inc. MMRF1320N MMRF1320GN RF Device Data Freescale Semiconductor, Inc. 7 RF INPUT Z1 C2 C1 B2 Z3 Z2 B1 C6 C11 C10 C5 C8 Z13 Z11 Z9 Z7 Z6 Z8 Z10 Z12 C7 L2 C13 Z15 Z14 C12 L1 DUT Z23 Z21 Z19 Z17 Z16 Z18 Z20 Z22 L4 Z25 Z24 C17 C15 C14 C16 C22 C19 C18 C21 0.690 0.120 Microstrip 0.134 0.120 Microstrip 0.395 0.120 Microstrip 0.125 0.058 Microstrip 0.450 0.058 Microstrip Z2, Z3 Z4, Z5 Z6, Z7 Z8*, Z9* Z10, Z11 Description 0.366 0.082 Microstrip Z1 Microstrip C24 Z27 Z26 C23 C26 Z29 C20 Z28 C25 C28 + C27 + Microstrip Z22, Z23 Z20, Z21 Z18, Z19 Z16, Z17 Z14, Z15 Z12, Z13 Description 0.400 0.150 Microstrip 0.422 0.150 Microstrip 0.112 0.289 Microstrip 0.289 0.393 Microstrip 0.439 0.746 Microstrip 0.210 0.068 Microstrip Microstrip C30 + C31 Z31 0.102 0.082 Microstrip 0.262 0.082 Microstrip 0.144 0.230 Microstrip 0.093 0.230 Microstrip 1.090 0.230 Microstrip Description VDD COAX4 Z30 * Line length include microstrip bends Z31 Z30 Z28, Z29 Z26, Z27 Z24, Z25 VDD COAX3 C29 + Figure 6. MMRF1320N Narrowband Test Circuit Schematic — 230 MHz C4 Z4 Z5 C9 C3 L3 Table 8. MMRF1320N Narrowband Test Circuit Microstrips — 230 MHz VGG + COAX2 COAX1 VGG + RF OUTPUT TYPICAL CHARACTERISTICS — 230 MHz Pout, OUTPUT POWER (WATTS) PEAK 180 VDD = 50 Vdc, f = 230 MHz Pulse Width = 100 sec, 20% Duty Cycle 160 140 120 100 Pin = 0.34 W 80 60 Pin = 0.17 W 40 20 0 0 0.5 1.5 1 2 2.5 3 3.5 VGS, GATE--SOURCE VOLTAGE (VOLTS) Figure 7. Output Power versus Gate--Source Voltage at a Constant Input Power VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz 30 Pulse Width = 100 sec, 20% Duty Cycle 50 48 Gps, POWER GAIN (dB) Pout, OUTPUT POWER (dBm) PEAK 90 31 52 46 44 42 40 38 VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz Pulse Width = 100 sec, 20% Duty Cycle 36 34 12 14 16 18 20 22 24 26 28 70 IDQ(A+B) = 900 mA 28 60 600 mA 27 50 300 mA 26 25 40 900 mA 600 mA 100 mA 30 300 mA 24 Gps 100 mA 23 10 32 30 29 80 D 20 10 300 100 Pin, INPUT POWER (dBm) D, DRAIN EFFICIENCY (%) 54 Pout, OUTPUT POWER (WATTS) PEAK f (MHz) P1dB (W) P3dB (W) 230 159 182 Figure 9. Power Gain and Drain Efficiency versus Output Power and Quiescent Current Figure 8. Output Power versus Input Power VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz Pulse Width = 100 sec, 20% Duty Cycle 27 25_C 70 26 60 25 50 TC = --40_C 85_C 24 40 23 30 25_C 22 Gps D 85_C 21 1 10 100 20 10 300 IDQ(A+B) = 100 mA, f = 230 MHz Pulse Width = 100 sec, 20% Duty Cycle 28 80 27 Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) 28 29 90 --40_C D, DRAIN EFFICIENCY (%) 29 26 25 24 23 50 V 22 45 V 21 40 V 20 19 VDD = 30 V 0 50 35 V 100 150 Pout, OUTPUT POWER (WATTS) PEAK Pout, OUTPUT POWER (WATTS) PEAK Figure 10. Power Gain and Drain Efficiency versus Output Power Figure 11. Power Gain versus Output Power and Drain--Source Voltage 200 MMRF1320N MMRF1320GN 8 RF Device Data Freescale Semiconductor, Inc. 230 MHz NARROWBAND PRODUCTION TEST FIXTURE f MHz Zsource Zload 230 6.2 + j17.7 12.1 + j12.5 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload 50 Input Matching Network = Test circuit impedance as measured from drain to drain, balanced configuration. + -Zsource Device Under Test -- Output Matching Network 50 + Zload Figure 12. Narrowband Series Equivalent Source and Load Impedance — 230 MHz MMRF1320N MMRF1320GN RF Device Data Freescale Semiconductor, Inc. 9 PACKAGE DIMENSIONS MMRF1320N MMRF1320GN 10 RF Device Data Freescale Semiconductor, Inc. MMRF1320N MMRF1320GN RF Device Data Freescale Semiconductor, Inc. 11 MMRF1320N MMRF1320GN 12 RF Device Data Freescale Semiconductor, Inc. MMRF1320N MMRF1320GN RF Device Data Freescale Semiconductor, Inc. 13 MMRF1320N MMRF1320GN 14 RF Device Data Freescale Semiconductor, Inc. MMRF1320N MMRF1320GN RF Device Data Freescale Semiconductor, Inc. 15 PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following resources to aid your design process. Application Notes AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins EB212: Using Data Sheet Impedances for RF LDMOS Devices Software Electromigration MTTF Calculator To Download Resources Specific to a Given Part Number: 1. Go to http://www.freescale.com/rf 2. Search by part number 3. Click part number link 4. Choose the desired resource from the drop down menu REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 July 2015 Description Initial Release of Data Sheet MMRF1320N MMRF1320GN 16 RF Device Data Freescale Semiconductor, Inc. How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. E 2015 Freescale Semiconductor, Inc. MMRF1320N MMRF1320GN Document Number: RF Device Data MMRF1320N Rev. 0, 7/2015Semiconductor, Inc. Freescale 17