Freescale Semiconductor Technical Data Document Number: MRFE6VP5150N Rev. 1, 7/2014 RF Power LDMOS Transistors High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs MRFE6VP5150NR1 MRFE6VP5150GNR1 These high ruggedness devices are designed for use in high VSWR industrial (including laser and plasma exciters), broadcast (analog and digital), aerospace and radio/land mobile applications. They are unmatched input and output designs allowing wide frequency range utilization, between 1.8 and 600 MHz. 1.8–600 MHz, 150 W CW, 50 V WIDEBAND RF POWER LDMOS TRANSISTORS Typical Performance: VDD = 50 Vdc Frequency (MHz) Signal Type Pout (W) Gps (dB) D (%) 87.5–108 (1,3) CW 179 22.5 74.6 230 (2) CW 150 26.3 72.0 230 (2) Pulse (100 sec, 20% Duty Cycle) 150 Peak 26.1 70.3 TO--270WB--4 PLASTIC MRFE6VP5150NR1 Load Mismatch/Ruggedness Frequency (MHz) Signal Type VSWR Pin (W) Test Voltage 98 (1) CW > 65:1 at all Phase Angles 3.0 (3 dB Overdrive) 50 230 (2) Pulse (100 sec, 20% Duty Cycle) Result TO--270WBG--4 PLASTIC MRFE6VP5150GNR1 No Device Degradation 0.62 Peak (3 dB Overdrive) 1. Measured in 87.5–108 MHz broadband reference circuit. 2. Measured in 230 MHz narrowband test circuit. 3. The values shown are the minimum measured performance numbers across the indicated frequency range. Gate A 3 2 Drain A Gate B 4 1 Drain B Features Wide Operating Frequency Range Extreme Ruggedness Unmatched Input and Output Allowing Wide Frequency Range Utilization Integrated Stability Enhancements Low Thermal Resistance Integrated ESD Protection Circuitry In Tape and Reel. R1 Suffix = 500 Units, 44 mm Tape Width, 13--inch Reel. Freescale Semiconductor, Inc., 2014. All rights reserved. RF Device Data Freescale Semiconductor, Inc. (Top View) Note: Exposed backside of the package is the source terminal for the transistors. Figure 1. Pin Connections MRFE6VP5150NR1 MRFE6VP5150GNR1 1 Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDSS –0.5, +133 Vdc Gate--Source Voltage VGS –6.0, +10 Vdc Storage Temperature Range Tstg –65 to +150 C Case Operating Temperature Range TC –40 to +150 C Operating Junction Temperature Range (1,2) TJ –40 to +225 C Total Device Dissipation @ TC = 25C Derate above 25C PD 952 4.76 W W/C Symbol Value (2,3) Unit Thermal Resistance, Junction to Case CW: Case Temperature 80C, 150 W CW, 50 Vdc, IDQ(A+B) = 100 mA, 230 MHz RJC 0.21 C/W Thermal Impedance, Junction to Case Pulse: Case Temperature 66C, 150 W Peak, 100 sec Pulse Width, 20% Duty Cycle, 50 Vdc, IDQ(A+B) = 100 mA, 230 MHz ZJC 0.04 C/W Table 2. Thermal Characteristics Characteristic Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2, passes 2500 V Machine Model (per EIA/JESD22--A115) B, passes 250 V Charge Device Model (per JESD22--C101) IV, passes 1200 V Table 4. Moisture Sensitivity Level Test Methodology Per JESD22--A113, IPC/JEDEC J--STD--020 Rating Package Peak Temperature Unit 3 260 C Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) Characteristic Off Characteristics Symbol Min Typ Max Unit IGSS — — 1 Adc 133 139 — Vdc (4) Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Drain--Source Breakdown Voltage (VGS = 0 Vdc, ID = 50 mAdc) V(BR)DSS Zero Gate Voltage Drain Leakage Current (VDS = 50 Vdc, VGS = 0 Vdc) IDSS — — 5 Adc Zero Gate Voltage Drain Leakage Current (VDS = 100 Vdc, VGS = 0 Vdc) IDSS — — 10 Adc Gate Threshold Voltage (4) (VDS = 10 Vdc, ID = 480 Adc) VGS(th) 1.8 2.4 2.8 Vdc Gate Quiescent Voltage (VDD = 50 Vdc, ID = 100 mAdc, Measured in Functional Test) VGS(Q) 2.3 2.8 3.3 Vdc Drain--Source On--Voltage (4) (VGS = 10 Vdc, ID = 1 Adc) VDS(on) — 0.26 — Vdc On Characteristics 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955. 4. Each side of device measured separately. (continued) MRFE6VP5150NR1 MRFE6VP5150GNR1 2 RF Device Data Freescale Semiconductor, Inc. Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Reverse Transfer Capacitance (VDS = 50 Vdc 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 0.8 — pF Output Capacitance (VDS = 50 Vdc 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 45.4 — pF Input Capacitance (VDS = 50 Vdc, VGS = 0 Vdc 30 mV(rms)ac @ 1 MHz) Ciss — 96.7 — pF Dynamic Characteristics (1) Functional Tests (2) (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 150 W Peak (30 W Avg.), f = 230 MHz, 100 sec Pulse Width, 20% Duty Cycle Power Gain Gps 25.0 26.1 27.5 dB Drain Efficiency D 68.0 70.3 — % Input Return Loss IRL — –16 –9 dB Load Mismatch/Ruggedness (In Freescale Test Fixture) 50 ohm system, IDQ(A+B) = 100 mA Frequency (MHz) 230 Signal Type VSWR Pin (W) Pulse (100 sec, 20% Duty Cycle) > 65:1 at all Phase Angles 0.62 Peak (3 dB Overdrive) Test Voltage, VDD Result 50 No Device Degradation 1. Each side of device measured separately. 2. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts. MRFE6VP5150NR1 MRFE6VP5150GNR1 RF Device Data Freescale Semiconductor, Inc. 3 TYPICAL CHARACTERISTICS 300 Ciss Coss NORMALIZED VGS(Q) C, CAPACITANCE (pF) 100 10 Crss 1 0 10 20 30 40 1.01 1 0.99 50 VDD = 50 Vdc IDQ(A+B) = 100 mA 1300 mA 0.98 0.97 0.96 0.95 0.94 --50 Measured with 30 mV(rms)ac @ 1 MHz VGS = 0 Vdc 0.1 1.06 1.05 300 mA 1.04 1.03 800 mA 1.02 --25 0 25 50 75 100 TC, CASE TEMPERATURE (C) VDS, DRAIN--SOURCE VOLTAGE (VOLTS) Note: Each side of device measured separately. IDQ (mA) Figure 2. Capacitance versus Drain--Source Voltage Slope (mV/C) 100 –2.466 300 –2.058 800 –2.015 1300 –1.877 Figure 3. Normalized VGS versus Quiescent Current and Case Temperature 108 MTTF (HOURS) VDD = 50 Vdc ID = 3.36 Amps 107 106 4.14 Amps 4.97 Amps 105 104 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (C) Note: MTTF value represents the total cumulative operating time under indicated test conditions. MTTF calculator available at http:/www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 4. MTTF versus Junction Temperature -- CW MRFE6VP5150NR1 MRFE6VP5150GNR1 4 RF Device Data Freescale Semiconductor, Inc. 230 MHz NARROWBAND PRODUCTION TEST FIXTURE C3 C5 B1 C7 C1 MRFE6VP5150N Rev. 2 D57619 COAX1 L1 C12 L3 C9 C16 C14 COAX3 CUT OUT AREA C20 C11 L2 C18 C19 C31 C15 C17 COAX4 L4 C13 C29 C25 C10 COAX2 C27 C21 C23 C26 C2 B2 C8 C22 C24 C28 C30 C4 C6 Figure 5. MRFE6VP5150NR1 Narrowband Test Circuit Component Layout — 230 MHz MRFE6VP5150NR1 MRFE6VP5150GNR1 RF Device Data Freescale Semiconductor, Inc. 5 230 MHz NARROWBAND PRODUCTION TEST FIXTURE Table 6. MRFE6VP5150NR1 Narrowband Test Circuit Component Designations and Values — 230 MHz Part Description Part Number Manufacturer B1, B2 Small Ferrite Beads, Surface Mount 2743019447 Fair-Rite C1, C2 22 F, 35 V Tantalum Capacitors T491X226K035AT Kemet C3, C4, C23, C24 0.1 F Chip Capacitors CDR33BX104AKWS AVX C5, C6 220 nF Chip Capacitors C1812C224K5RACTU Kemet C7, C8 2.2 F Chip Capacitors C1825C225J5RACTU Kemet C9 2.2 pF Chip Capacitor ATC100B2R2JT500XT ATC C10, C11 18 pF Chip Capacitors ATC100B180JT500XT ATC C12, C13 330 pF Chip Capacitors ATC100B331JT200XT ATC C14, C15 39 pF Chip Capacitors ATC100B390JT500XT ATC C16, C17 15 pF Chip Capacitors ATC100B150JT500XT ATC C18, C19 1000 pF Chip Capacitors ATC100B102JT50XT ATC C20 82 pF Chip Capacitor ATC100B820JT500XT ATC C21, C22 0.10 F Chip Capacitors C1812F104K1RACTU Kemet C25, C26 2.2 F Chip Capacitors 2225X7R225KT3AB ATC C27, C28, C29, C30 470 F, 63 V Electrolytic Capacitors MCGPR63V477M13X26-RH Multicomp C31 36 pF Chip Capacitor ATC100B360JT500XT ATC Coax1, 2, 3, 4 25 SemiRigid Coax, 2.4 UT-141C-25 Micro-Coax L1, L2 3 Turns, 12 nH Inductors GA3094-ALC Coilcraft L3, L4 4 Turns, 17.5 nH Inductors GA3095-ALC Coilcraft PCB Arlon AD255A, 0.030, r = 2.55 D57619 MTL MRFE6VP5150NR1 MRFE6VP5150GNR1 6 RF Device Data Freescale Semiconductor, Inc. MRFE6VP5150NR1 MRFE6VP5150GNR1 RF Device Data Freescale Semiconductor, Inc. 7 RF INPUT Z1 C2 C1 B2 C4 Z4 Z5 C9 C3 C6 C11 C10 C5 C8 Z13 Z11 Z9 Z7 Z6 Z8 Z10 Z12 C7 L2 C13 Z15 Z14 C12 L1 DUT Z23 Z21 Z19 Z17 Z16 Z18 Z20 Z22 L4 Z25 Z24 C17 C15 C14 C16 L3 C22 C19 C18 C21 C24 Z27 Z26 C23 0.690 0.120 Microstrip 0.134 0.120 Microstrip 0.395 0.120 Microstrip 0.125 0.058 Microstrip 0.450 0.058 Microstrip Z2, Z3 Z4, Z5 Z6, Z7 Z8*, Z9* Z10, Z11 Description 0.366 0.082 Microstrip Z1 Microstrip C26 Z29 C20 Z28 C25 C28 + C27 + VDD C30 + Microstrip Z22, Z23 Z20, Z21 Z18, Z19 Z16, Z17 Z14, Z15 Z12, Z13 Description 0.400 0.150 Microstrip 0.422 0.150 Microstrip 0.112 0.289 Microstrip 0.289 0.393 Microstrip 0.439 0.746 Microstrip 0.210 0.068 Microstrip Microstrip C31 Z31 0.102 0.082 Microstrip 0.262 0.082 Microstrip 0.144 0.230 Microstrip 0.093 0.230 Microstrip 1.090 0.230 Microstrip * Line length include microstrip bends Z31 Z30 Z28, Z29 Z26, Z27 Z24, Z25 Z30 Description VDD COAX4 COAX3 C29 + Figure 6. MRFE6VP5150NR1 Narrowband Test Circuit Schematic — 230 MHz Z3 Z2 B1 Table 7. MRFE6VP5150NR1 Narrowband Test Circuit Microstrips — 230 MHz VGG + COAX2 COAX1 VGG + RF OUTPUT TYPICAL CHARACTERISTICS — 230 MHz Pout, OUTPUT POWER (WATTS) PEAK 180 VDD = 50 Vdc, f = 230 MHz Pulse Width = 100 sec, 20% Duty Cycle 160 140 120 100 Pin = 0.34 W 80 60 Pin = 0.17 W 40 20 0 0 0.5 1.5 1 2 2.5 3 3.5 VGS, GATE--SOURCE VOLTAGE (VOLTS) Figure 7. Output Power versus Gate--Source Voltage at a Constant Input Power VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz 30 Pulse Width = 100 sec, 20% Duty Cycle 50 48 Gps, POWER GAIN (dB) Pout, OUTPUT POWER (dBm) PEAK 90 31 52 46 44 42 40 38 VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz Pulse Width = 100 sec, 20% Duty Cycle 36 34 12 14 16 18 20 22 24 26 28 70 IDQ(A+B) = 900 mA 28 60 600 mA 27 50 300 mA 26 25 40 900 mA 600 mA 100 mA 30 300 mA 24 Gps 100 mA 23 10 32 30 29 80 D 20 10 300 100 Pin, INPUT POWER (dBm) D, DRAIN EFFICIENCY (%) 54 Pout, OUTPUT POWER (WATTS) PEAK f (MHz) P1dB (W) P3dB (W) 230 159 182 Figure 9. Power Gain and Drain Efficiency versus Output Power and Quiescent Current Figure 8. Output Power versus Input Power VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz Pulse Width = 100 sec, 20% Duty Cycle 27 25_C 70 26 60 25 50 TC = --40_C 85_C 24 40 23 30 25_C 22 85_C 21 1 Gps D 10 100 20 10 300 IDQ(A+B) = 100 mA, f = 230 MHz Pulse Width = 100 sec, 20% Duty Cycle 28 80 27 Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) 28 29 90 --40_C D, DRAIN EFFICIENCY (%) 29 26 25 24 23 50 V 22 45 V 21 40 V 20 19 VDD = 30 V 0 50 35 V 100 150 Pout, OUTPUT POWER (WATTS) PEAK Pout, OUTPUT POWER (WATTS) PEAK Figure 10. Power Gain and Drain Efficiency versus Output Power Figure 11. Power Gain versus Output Power and Drain--Source Voltage 200 MRFE6VP5150NR1 MRFE6VP5150GNR1 8 RF Device Data Freescale Semiconductor, Inc. 230 MHz NARROWBAND PRODUCTION TEST FIXTURE VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 150 W Peak f MHz Zsource Zload 230 6.2 + j17.7 12.1 + j12.5 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload 50 Input Matching Network = Test circuit impedance as measured from drain to drain, balanced configuration. + -Zsource Device Under Test -- Output Matching Network 50 + Zload Figure 12. Narrowband Series Equivalent Source and Load Impedance — 230 MHz MRFE6VP5150NR1 MRFE6VP5150GNR1 RF Device Data Freescale Semiconductor, Inc. 9 87.5–108 MHz BROADBAND REFERENCE CIRCUIT Table 8. 87.5–108 MHz Broadband Performance (In Freescale Reference Circuit, 50 ohm system) VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pin = 1.5 W Signal Type f (MHz) Gps (dB) D (%) Pout (W) CW 87.5 22.7 74.6 187 98 22.8 77.1 191 108 22.5 77.8 179 Table 9. Load Mismatch/Ruggedness (In Freescale Reference Circuit, 50 ohm system) IDQ(A+B) = 100 mA Frequency (MHz) Signal Type VSWR Pin (W) 98 CW > 65:1 at all Phase Angles 3.0 (3 dB Overdrive) Test Voltage, VDD Result 50 No Device Degradation MRFE6VP5150NR1 MRFE6VP5150GNR1 10 RF Device Data Freescale Semiconductor, Inc. 87.5–108 MHz BROADBAND REFERENCE CIRCUIT C3* D58764 R8* R5* R6* R4* R3* R7* C2* R1* R2* C1* C11 C12 C13 R10* U2* L2 C7 C14 C6 + U1* L3 C8 L1 T1 C4 R9* Q1 C9 C10 C5 COAX1 MRFE6VP5150N Rev. 0 * Bias Regulator and Temperature Compensation. Refer to AN1643, RF LDMOS Power Modules for GSM Base Station Application: Optimum Biasing Circuit. Go to http://www.freescale.com/rf. Select Documentation/Application Notes – AN1643. Figure 13. MRFE6VP5150NR1 Broadband Reference Circuit Component Layout — 87.5–108 MHz MRFE6VP5150NR1 MRFE6VP5150GNR1 RF Device Data Freescale Semiconductor, Inc. 11 87.5–108 MHz BROADBAND REFERENCE CIRCUIT Table 10. MRFE6VP5150NR1 Broadband Reference Circuit Component Designations and Values — 87.5–108 MHz Part Description Part Number Manufacturer C1, C2 1 F Chip Capacitors GRM21BR71H105KA12L Murata C3 10 nF Chip Capacitor ATC200B103KT50XT ATC C4, C8, C9 1000 pF Chip Capacitors ATC200B102KT50XT ATC C5 43 pF Chip Capacitor ATC100B430JT500XT ATC C6, C14 10 F Chip Capacitors C5750X7S2A106M230KB TDK C7 470 F, 63 V Electrolytic Capacitor MCGPR63V477M13X26RH Multicomp C10 10 pF Chip Capacitor ATC100B100JT500XT ATC C11 10 nF Chip Capacitor GRM319R72A103KA01D Murata C12 47 nF Chip Capacitor GRM31MR72A473KA01L Murata C13 470 nF Chip Capacitor GRM31MR72A474KA35L Murata Coax1 35 Flex Cable, 11.02, 3 Turns HSF-141C-35 Hongsen Cable L1 47 nH Inductor 1812SMS47NJLC Coilcraft L2, L3 Toroid Core, 10 Turns, 22 AWG Magnetic Wire 11-750-K / 8077 Ferronics/Beldon Q1 RF Power LDMOS Transistor MRFE6VP5150NR1 Freescale R1 2.2 K, 1/8 W Chip Resistor CRCW08052K20FKEA Vishay R2 390 , 1/8 W Chip Resistor CRCW0805390RFKEA Vishay R3 10 , 1/8 W Chip Resistor RK73H2ATTD10R0F KOA Speer R4 1.0 K, 1/8 W Chip Resistor RR1220P-102-D Susumu R5 2.7 K, 1/8 W Chip Resistor CRCW08052K70FKEA Vishay R6 200 , 1/8 W Chip Resistor CRCW0805200RFKEA Vishay R7 5.0 K Multi-turn Cermet Trimmer Potentiometer 3224W-1-502E Bourns R8 10 , 1/4 W Chip Resistor CRCW120610R0FKEA Vishay R9, R10 5.1 K, 1/2 W Chip Resistors CRCW12105K10FKEA Vishay T1 61 Material Binocular Core Ferrite (1:1) with 24 AWG 1 Turn Primary, 24 AWG 1 Turn Secondary, Hand Wound 2861000102 Fair-Rite U1 Voltage Regulator 5 V, Micro8 LP2951ACDMR2G ON Semiconductor U2 NPN Bipolar Transistor BC847ALT1G ON Semiconductor PCB Rogers RO4350B, 0.030, r = 3.66 D58764 MTL MRFE6VP5150NR1 MRFE6VP5150GNR1 12 RF Device Data Freescale Semiconductor, Inc. MRFE6VP5150NR1 MRFE6VP5150GNR1 RF Device Data Freescale Semiconductor, Inc. 13 RF INPUT Z1 C5 C4 L1 Z2 T1 Z8 Z7 DUT Z10 Z9 Z12 Z11 Z14 Z13 L2 L3 C9 C8 Z16 Z15 C11 C10 C12 COAX1 C13 C14 Z17 C6 0.230 0.080 Microstrip 0.280 0.080 Microstrip 0.680 0.080 Microstrip 0.310 0.170 Microstrip 0.270 0.200 Microstrip 0.380 0.630 Microstrip Z2* Z3* Z4 Z5, Z6 Z7, Z8 Description Z1 Microstrip 0.480 0.150 Microstrip 0.240 0.210 Microstrip 0.680 0.150 Microstrip 2.060 0.027 Microstrip 0.240 0.180 Microstrip Description * Line length includes microstrip bends Z17 Z15, Z16 Z13*, Z14* Z11*, Z12* Z9, Z10 Microstrip VDD RF OUTPUT C7 + Table 11. MRFE6VP51510NR1 Broadband Reference Circuit Microstrips — 87.5–108 MHz Figure 14. MRFE6VP5150NR1 Broadband Reference Circuit Schematic — 87.5–108 MHz Z6 Z5 Z4 Z3 R8 Bias Regulator and Temperature Compensation TYPICAL CHARACTERISTICS — 87.5–108 MHz BROADBAND REFERENCE CIRCUIT 24 Gps, POWER GAIN (dB) 80 D 70 23.5 60 23 50 22.5 40 Gps 22 21.5 200 175 Pout 21 150 20.5 125 20 86 88 90 92 94 96 D, DRAIN EFFICIENCY (%) 90 VDD = 50 Vdc, Pin = 1.0 W, IDQ(A+B) = 100 mA 24.5 100 98 100 102 104 106 108 110 Pout, OUTPUT POWER (WATTS) 25 f, FREQUENCY (MHz) Figure 15. Power Gain, Drain Efficiency and CW Output Power versus Frequency at a Constant Input Power 200 VDD = 50 Vdc Pin = 0.25 W Pout, OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS) 200 150 f = 108 MHz 100 98 MHz 50 87.5 MHz VDD = 50 Vdc 0.5 W Pin = 1.0 150 100 f = 108 MHz 98 MHz 50 87.5 MHz 0 0 0.5 1 1.5 2 2.5 3 3.5 0 0 0.5 1 1.5 2 2.5 3 3.5 VGS, GATE--SOURCE VOLTAGE (VOLTS) VGS, GATE--SOURCE VOLTAGE (VOLTS) Figure 16. CW Output Power versus Gate--Source Voltage at a Constant Input Power Figure 17. CW Output Power versus Gate--Source Voltage at a Constant Input Power MRFE6VP5150NR1 MRFE6VP5150GNR1 14 RF Device Data Freescale Semiconductor, Inc. TYPICAL CHARACTERISTICS — 87.5–108 MHz BROADBAND REFERENCE CIRCUIT Pout, OUTPUT POWER (dBm) 54 52 50 f = 108 MHz 98 MHz 48 87.5 MHz 46 44 VDD = 50 Vdc lDQ(A+B) = 100 mA 20 22 24 26 28 30 Pin, INPUT POWER (dBm) f (MHz) P1dB (W) P3dB (W) 87.5 164 189 98 145 183 108 130 165 Figure 18. CW Output Power versus Input Power 90 Gps, POWER GAIN (dB) 28 26 24 D f = 108 MHz 98 MHz 70 87.5 MHz 60 108 MHz 22 80 Gps 50 98 MHz 20 40 87.5 MHz 18 30 D, DRAIN EFFICIENCY (%) 30 VDD = 50 Vdc, lDQ(A+B) = 100 mA 30 200 100 Pout, OUTPUT POWER (WATTS) Figure 19. Power Gain and Drain Efficiency versus CW Output Power MRFE6VP5150NR1 MRFE6VP5150GNR1 RF Device Data Freescale Semiconductor, Inc. 15 87.5–108 MHz BROADBAND REFERENCE CIRCUIT Zsource Zo = 50 f = 108 MHz f = 87.5 MHz f = 87.5 MHz Zload f = 108 MHz VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 150 W CW f MHz Zsource Zload 87.5 20.3 + j26.9 35.3 + j15.9 92 20.4 + j29.6 35.2 + j17.1 96 20.6 + j31.9 35.1 + j17.3 100 20.8 + j34.1 33.2 + j17.4 104 21.0 + j36.5 31.7 + j19.5 108 21.4 + j38.6 30.6 + j21.4 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload 50 = Test circuit impedance as measured from drain to drain, balanced configuration. Input Matching Network + Device Under Test -- -Z source Output Matching Network 50 + Z load Figure 20. Broadband Series Equivalent Source and Load Impedance — 87.5–108 MHz MRFE6VP5150NR1 MRFE6VP5150GNR1 16 RF Device Data Freescale Semiconductor, Inc. HARMONIC MEASUREMENTS — 87.5–108 MHz BROADBAND REFERENCE CIRCUIT 10 0 1 [T1] 100 MHz 1 1 [T1] 100 MHz --39.8 dB 2 [T1] 200 MHz --20.1 dB --10 3 [T1] 300 MHz --45.5 dB 2 --20 4 [T1] 400 MHz --35.6 dB --30 --40 H3 H4 H5 H2 (200 MHz) (300 MHz) (400 MHz) (500 MHz) --39.8 dB --20.1 dB --45.5 dB --35.6 dB 4 1 3 --50 --60 --70 --80 --90 Start 0 Hz 60 Hz Stop 600 Hz Figure 21. 100 MHz Harmonics @ 150 W MRFE6VP5150NR1 MRFE6VP5150GNR1 RF Device Data Freescale Semiconductor, Inc. 17 PACKAGE DIMENSIONS MRFE6VP5150NR1 MRFE6VP5150GNR1 18 RF Device Data Freescale Semiconductor, Inc. MRFE6VP5150NR1 MRFE6VP5150GNR1 RF Device Data Freescale Semiconductor, Inc. 19 MRFE6VP5150NR1 MRFE6VP5150GNR1 20 RF Device Data Freescale Semiconductor, Inc. MRFE6VP5150NR1 MRFE6VP5150GNR1 RF Device Data Freescale Semiconductor, Inc. 21 MRFE6VP5150NR1 MRFE6VP5150GNR1 22 RF Device Data Freescale Semiconductor, Inc. MRFE6VP5150NR1 MRFE6VP5150GNR1 RF Device Data Freescale Semiconductor, Inc. 23 PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following resources to aid your design process. Application Notes AN1955: Thermal Measurement Methodology of RF Power Amplifiers AN1643: RF LDMOS Power Modules for GSM Base Station Application: Optimum Biasing Circuit Engineering Bulletins EB212: Using Data Sheet Impedances for RF LDMOS Devices Software Electromigration MTTF Calculator RF High Power Model Development Tools Printed Circuit Boards For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 May 2014 Initial Release of Data Sheet 1 July 2014 Table 10, Broadband Reference Circuit Component Designations and Values — 87.5–108 MHz: updated R2, R9 and R10 resistors, p. 12 MRFE6VP5150NR1 MRFE6VP5150GNR1 24 RF Device Data Freescale Semiconductor, Inc. How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. E 2014 Freescale Semiconductor, Inc. MRFE6VP5150NR1 MRFE6VP5150GNR1 Document Number: RF Device Data MRFE6VP5150N Rev. 1, 7/2014Semiconductor, Inc. Freescale 25