Data Sheet

Freescale Semiconductor
Technical Data
Document Number: MRFE6VP5150N
Rev. 1, 7/2014
RF Power LDMOS Transistors
High Ruggedness N--Channel
Enhancement--Mode Lateral MOSFETs
MRFE6VP5150NR1
MRFE6VP5150GNR1
These high ruggedness devices are designed for use in high VSWR
industrial (including laser and plasma exciters), broadcast (analog and digital),
aerospace and radio/land mobile applications. They are unmatched input and
output designs allowing wide frequency range utilization, between 1.8 and
600 MHz.
1.8–600 MHz, 150 W CW, 50 V
WIDEBAND
RF POWER LDMOS TRANSISTORS
Typical Performance: VDD = 50 Vdc
Frequency
(MHz)
Signal Type
Pout
(W)
Gps
(dB)
D
(%)
87.5–108 (1,3)
CW
179
22.5
74.6
230 (2)
CW
150
26.3
72.0
230 (2)
Pulse
(100 sec, 20%
Duty Cycle)
150 Peak
26.1
70.3
TO--270WB--4
PLASTIC
MRFE6VP5150NR1
Load Mismatch/Ruggedness
Frequency
(MHz)
Signal Type
VSWR
Pin
(W)
Test
Voltage
98 (1)
CW
> 65:1
at all Phase
Angles
3.0
(3 dB
Overdrive)
50
230 (2)
Pulse
(100 sec, 20%
Duty Cycle)
Result
TO--270WBG--4
PLASTIC
MRFE6VP5150GNR1
No Device
Degradation
0.62 Peak
(3 dB
Overdrive)
1. Measured in 87.5–108 MHz broadband reference circuit.
2. Measured in 230 MHz narrowband test circuit.
3. The values shown are the minimum measured performance numbers across the
indicated frequency range.
Gate A 3
2 Drain A
Gate B 4
1 Drain B
Features







Wide Operating Frequency Range
Extreme Ruggedness
Unmatched Input and Output Allowing Wide Frequency Range Utilization
Integrated Stability Enhancements
Low Thermal Resistance
Integrated ESD Protection Circuitry
In Tape and Reel. R1 Suffix = 500 Units, 44 mm Tape Width, 13--inch Reel.
 Freescale Semiconductor, Inc., 2014. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
(Top View)
Note: Exposed backside of the package is
the source terminal for the transistors.
Figure 1. Pin Connections
MRFE6VP5150NR1 MRFE6VP5150GNR1
1
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
–0.5, +133
Vdc
Gate--Source Voltage
VGS
–6.0, +10
Vdc
Storage Temperature Range
Tstg
–65 to +150
C
Case Operating Temperature Range
TC
–40 to +150
C
Operating Junction Temperature Range (1,2)
TJ
–40 to +225
C
Total Device Dissipation @ TC = 25C
Derate above 25C
PD
952
4.76
W
W/C
Symbol
Value (2,3)
Unit
Thermal Resistance, Junction to Case
CW: Case Temperature 80C, 150 W CW, 50 Vdc, IDQ(A+B) = 100 mA, 230 MHz
RJC
0.21
C/W
Thermal Impedance, Junction to Case
Pulse: Case Temperature 66C, 150 W Peak, 100 sec Pulse Width,
20% Duty Cycle, 50 Vdc, IDQ(A+B) = 100 mA, 230 MHz
ZJC
0.04
C/W
Table 2. Thermal Characteristics
Characteristic
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
2, passes 2500 V
Machine Model (per EIA/JESD22--A115)
B, passes 250 V
Charge Device Model (per JESD22--C101)
IV, passes 1200 V
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22--A113, IPC/JEDEC J--STD--020
Rating
Package Peak Temperature
Unit
3
260
C
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted)
Characteristic
Off Characteristics
Symbol
Min
Typ
Max
Unit
IGSS
—
—
1
Adc
133
139
—
Vdc
(4)
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
Drain--Source Breakdown Voltage
(VGS = 0 Vdc, ID = 50 mAdc)
V(BR)DSS
Zero Gate Voltage Drain Leakage Current
(VDS = 50 Vdc, VGS = 0 Vdc)
IDSS
—
—
5
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 100 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Gate Threshold Voltage (4)
(VDS = 10 Vdc, ID = 480 Adc)
VGS(th)
1.8
2.4
2.8
Vdc
Gate Quiescent Voltage
(VDD = 50 Vdc, ID = 100 mAdc, Measured in Functional Test)
VGS(Q)
2.3
2.8
3.3
Vdc
Drain--Source On--Voltage (4)
(VGS = 10 Vdc, ID = 1 Adc)
VDS(on)
—
0.26
—
Vdc
On Characteristics
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access
MTTF calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes -- AN1955.
4. Each side of device measured separately.
(continued)
MRFE6VP5150NR1 MRFE6VP5150GNR1
2
RF Device Data
Freescale Semiconductor, Inc.
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Reverse Transfer Capacitance
(VDS = 50 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
0.8
—
pF
Output Capacitance
(VDS = 50 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
45.4
—
pF
Input Capacitance
(VDS = 50 Vdc, VGS = 0 Vdc  30 mV(rms)ac @ 1 MHz)
Ciss
—
96.7
—
pF
Dynamic Characteristics (1)
Functional Tests (2) (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 150 W Peak (30 W Avg.),
f = 230 MHz, 100 sec Pulse Width, 20% Duty Cycle
Power Gain
Gps
25.0
26.1
27.5
dB
Drain Efficiency
D
68.0
70.3
—
%
Input Return Loss
IRL
—
–16
–9
dB
Load Mismatch/Ruggedness (In Freescale Test Fixture) 50 ohm system, IDQ(A+B) = 100 mA
Frequency
(MHz)
230
Signal Type
VSWR
Pin
(W)
Pulse
(100 sec, 20% Duty Cycle)
> 65:1
at all Phase Angles
0.62 Peak
(3 dB Overdrive)
Test Voltage, VDD
Result
50
No Device Degradation
1. Each side of device measured separately.
2. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing
(GN) parts.
MRFE6VP5150NR1 MRFE6VP5150GNR1
RF Device Data
Freescale Semiconductor, Inc.
3
TYPICAL CHARACTERISTICS
300
Ciss
Coss
NORMALIZED VGS(Q)
C, CAPACITANCE (pF)
100
10
Crss
1
0
10
20
30
40
1.01
1
0.99
50
VDD = 50 Vdc
IDQ(A+B) = 100 mA
1300 mA
0.98
0.97
0.96
0.95
0.94
--50
Measured with 30 mV(rms)ac @ 1 MHz
VGS = 0 Vdc
0.1
1.06
1.05 300 mA
1.04
1.03
800 mA
1.02
--25
0
25
50
75
100
TC, CASE TEMPERATURE (C)
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
Note: Each side of device measured separately.
IDQ (mA)
Figure 2. Capacitance versus Drain--Source Voltage
Slope (mV/C)
100
–2.466
300
–2.058
800
–2.015
1300
–1.877
Figure 3. Normalized VGS versus Quiescent
Current and Case Temperature
108
MTTF (HOURS)
VDD = 50 Vdc
ID = 3.36 Amps
107
106
4.14 Amps
4.97 Amps
105
104
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (C)
Note: MTTF value represents the total cumulative operating time
under indicated test conditions.
MTTF calculator available at http:/www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 4. MTTF versus Junction Temperature -- CW
MRFE6VP5150NR1 MRFE6VP5150GNR1
4
RF Device Data
Freescale Semiconductor, Inc.
230 MHz NARROWBAND PRODUCTION TEST FIXTURE
C3 C5
B1
C7
C1
MRFE6VP5150N
Rev. 2
D57619
COAX1
L1 C12
L3
C9
C16
C14
COAX3
CUT OUT AREA
C20
C11
L2
C18
C19
C31
C15
C17
COAX4
L4
C13
C29
C25
C10
COAX2
C27
C21 C23
C26
C2
B2
C8
C22 C24
C28
C30
C4 C6
Figure 5. MRFE6VP5150NR1 Narrowband Test Circuit Component Layout — 230 MHz
MRFE6VP5150NR1 MRFE6VP5150GNR1
RF Device Data
Freescale Semiconductor, Inc.
5
230 MHz NARROWBAND PRODUCTION TEST FIXTURE
Table 6. MRFE6VP5150NR1 Narrowband Test Circuit Component Designations and Values — 230 MHz
Part
Description
Part Number
Manufacturer
B1, B2
Small Ferrite Beads, Surface Mount
2743019447
Fair-Rite
C1, C2
22 F, 35 V Tantalum Capacitors
T491X226K035AT
Kemet
C3, C4, C23, C24
0.1 F Chip Capacitors
CDR33BX104AKWS
AVX
C5, C6
220 nF Chip Capacitors
C1812C224K5RACTU
Kemet
C7, C8
2.2 F Chip Capacitors
C1825C225J5RACTU
Kemet
C9
2.2 pF Chip Capacitor
ATC100B2R2JT500XT
ATC
C10, C11
18 pF Chip Capacitors
ATC100B180JT500XT
ATC
C12, C13
330 pF Chip Capacitors
ATC100B331JT200XT
ATC
C14, C15
39 pF Chip Capacitors
ATC100B390JT500XT
ATC
C16, C17
15 pF Chip Capacitors
ATC100B150JT500XT
ATC
C18, C19
1000 pF Chip Capacitors
ATC100B102JT50XT
ATC
C20
82 pF Chip Capacitor
ATC100B820JT500XT
ATC
C21, C22
0.10 F Chip Capacitors
C1812F104K1RACTU
Kemet
C25, C26
2.2 F Chip Capacitors
2225X7R225KT3AB
ATC
C27, C28, C29, C30
470 F, 63 V Electrolytic Capacitors
MCGPR63V477M13X26-RH
Multicomp
C31
36 pF Chip Capacitor
ATC100B360JT500XT
ATC
Coax1, 2, 3, 4
25  SemiRigid Coax, 2.4
UT-141C-25
Micro-Coax
L1, L2
3 Turns, 12 nH Inductors
GA3094-ALC
Coilcraft
L3, L4
4 Turns, 17.5 nH Inductors
GA3095-ALC
Coilcraft
PCB
Arlon AD255A, 0.030, r = 2.55
D57619
MTL
MRFE6VP5150NR1 MRFE6VP5150GNR1
6
RF Device Data
Freescale Semiconductor, Inc.
MRFE6VP5150NR1 MRFE6VP5150GNR1
RF Device Data
Freescale Semiconductor, Inc.
7
RF
INPUT
Z1
C2
C1
B2
C4
Z4
Z5
C9
C3
C6
C11
C10
C5
C8
Z13
Z11
Z9
Z7
Z6
Z8
Z10
Z12
C7
L2
C13
Z15
Z14
C12
L1
DUT
Z23
Z21
Z19
Z17
Z16
Z18
Z20
Z22
L4
Z25
Z24
C17
C15
C14
C16
L3
C22
C19
C18
C21
C24
Z27
Z26
C23
0.690  0.120 Microstrip
0.134  0.120 Microstrip
0.395  0.120 Microstrip
0.125  0.058 Microstrip
0.450  0.058 Microstrip
Z2, Z3
Z4, Z5
Z6, Z7
Z8*, Z9*
Z10, Z11
Description
0.366  0.082 Microstrip
Z1
Microstrip
C26
Z29
C20
Z28
C25
C28
+
C27
+
VDD
C30
+
Microstrip
Z22, Z23
Z20, Z21
Z18, Z19
Z16, Z17
Z14, Z15
Z12, Z13
Description
0.400  0.150 Microstrip
0.422  0.150 Microstrip
0.112  0.289 Microstrip
0.289  0.393 Microstrip
0.439  0.746 Microstrip
0.210  0.068 Microstrip
Microstrip
C31
Z31
0.102  0.082 Microstrip
0.262  0.082 Microstrip
0.144  0.230 Microstrip
0.093  0.230 Microstrip
1.090  0.230 Microstrip
* Line length include microstrip bends
Z31
Z30
Z28, Z29
Z26, Z27
Z24, Z25
Z30
Description
VDD
COAX4
COAX3
C29
+
Figure 6. MRFE6VP5150NR1 Narrowband Test Circuit Schematic — 230 MHz
Z3
Z2
B1
Table 7. MRFE6VP5150NR1 Narrowband Test Circuit Microstrips — 230 MHz
VGG
+
COAX2
COAX1
VGG
+
RF
OUTPUT
TYPICAL CHARACTERISTICS — 230 MHz
Pout, OUTPUT POWER (WATTS) PEAK
180
VDD = 50 Vdc, f = 230 MHz
Pulse Width = 100 sec, 20% Duty Cycle
160
140
120
100
Pin = 0.34 W
80
60
Pin = 0.17 W
40
20
0
0
0.5
1.5
1
2
2.5
3
3.5
VGS, GATE--SOURCE VOLTAGE (VOLTS)
Figure 7. Output Power versus Gate--Source
Voltage at a Constant Input Power
VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz
30 Pulse Width = 100 sec, 20% Duty Cycle
50
48
Gps, POWER GAIN (dB)
Pout, OUTPUT POWER (dBm) PEAK
90
31
52
46
44
42
40
38
VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz
Pulse Width = 100 sec, 20% Duty Cycle
36
34
12
14
16
18
20
22
24
26
28
70
IDQ(A+B) = 900 mA
28
60
600 mA
27
50
300 mA
26
25
40
900 mA
600 mA
100 mA
30
300 mA
24
Gps
100 mA
23
10
32
30
29
80
D
20
10
300
100
Pin, INPUT POWER (dBm)
D, DRAIN EFFICIENCY (%)
54
Pout, OUTPUT POWER (WATTS) PEAK
f
(MHz)
P1dB
(W)
P3dB
(W)
230
159
182
Figure 9. Power Gain and Drain Efficiency
versus Output Power and Quiescent Current
Figure 8. Output Power versus Input Power
VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz
Pulse Width = 100 sec, 20% Duty Cycle
27
25_C 70
26
60
25
50
TC = --40_C
85_C
24
40
23
30
25_C
22
85_C
21
1
Gps
D
10
100
20
10
300
IDQ(A+B) = 100 mA, f = 230 MHz
Pulse Width = 100 sec, 20% Duty Cycle
28
80
27
Gps, POWER GAIN (dB)
Gps, POWER GAIN (dB)
28
29
90
--40_C
D, DRAIN EFFICIENCY (%)
29
26
25
24
23
50 V
22
45 V
21
40 V
20
19
VDD = 30 V
0
50
35 V
100
150
Pout, OUTPUT POWER (WATTS) PEAK
Pout, OUTPUT POWER (WATTS) PEAK
Figure 10. Power Gain and Drain Efficiency
versus Output Power
Figure 11. Power Gain versus Output Power
and Drain--Source Voltage
200
MRFE6VP5150NR1 MRFE6VP5150GNR1
8
RF Device Data
Freescale Semiconductor, Inc.
230 MHz NARROWBAND PRODUCTION TEST FIXTURE
VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 150 W Peak
f
MHz
Zsource

Zload

230
6.2 + j17.7
12.1 + j12.5
Zsource = Test circuit impedance as measured from
gate to gate, balanced configuration.
Zload
50 
Input
Matching
Network
= Test circuit impedance as measured from
drain to drain, balanced configuration.
+
-Zsource
Device
Under
Test
--
Output
Matching
Network
50 
+
Zload
Figure 12. Narrowband Series Equivalent Source and Load Impedance — 230 MHz
MRFE6VP5150NR1 MRFE6VP5150GNR1
RF Device Data
Freescale Semiconductor, Inc.
9
87.5–108 MHz BROADBAND REFERENCE CIRCUIT
Table 8. 87.5–108 MHz Broadband Performance (In Freescale Reference Circuit, 50 ohm system)
VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pin = 1.5 W
Signal Type
f
(MHz)
Gps
(dB)
D
(%)
Pout
(W)
CW
87.5
22.7
74.6
187
98
22.8
77.1
191
108
22.5
77.8
179
Table 9. Load Mismatch/Ruggedness (In Freescale Reference Circuit, 50 ohm system) IDQ(A+B) = 100 mA
Frequency
(MHz)
Signal Type
VSWR
Pin
(W)
98
CW
> 65:1
at all Phase Angles
3.0
(3 dB Overdrive)
Test Voltage, VDD
Result
50
No Device
Degradation
MRFE6VP5150NR1 MRFE6VP5150GNR1
10
RF Device Data
Freescale Semiconductor, Inc.
87.5–108 MHz BROADBAND REFERENCE CIRCUIT
C3*
D58764
R8*
R5* R6* R4* R3*
R7* C2*
R1*
R2*
C1*
C11 C12 C13
R10*
U2*
L2
C7
C14 C6
+
U1*
L3
C8
L1
T1
C4
R9*
Q1
C9 C10
C5
COAX1
MRFE6VP5150N
Rev. 0
* Bias Regulator and Temperature Compensation. Refer to AN1643, RF LDMOS Power Modules for GSM Base Station
Application: Optimum Biasing Circuit. Go to http://www.freescale.com/rf. Select Documentation/Application Notes – AN1643.
Figure 13. MRFE6VP5150NR1 Broadband Reference Circuit Component Layout — 87.5–108 MHz
MRFE6VP5150NR1 MRFE6VP5150GNR1
RF Device Data
Freescale Semiconductor, Inc.
11
87.5–108 MHz BROADBAND REFERENCE CIRCUIT
Table 10. MRFE6VP5150NR1 Broadband Reference Circuit Component Designations and Values — 87.5–108 MHz
Part
Description
Part Number
Manufacturer
C1, C2
1 F Chip Capacitors
GRM21BR71H105KA12L
Murata
C3
10 nF Chip Capacitor
ATC200B103KT50XT
ATC
C4, C8, C9
1000 pF Chip Capacitors
ATC200B102KT50XT
ATC
C5
43 pF Chip Capacitor
ATC100B430JT500XT
ATC
C6, C14
10 F Chip Capacitors
C5750X7S2A106M230KB
TDK
C7
470 F, 63 V Electrolytic Capacitor
MCGPR63V477M13X26RH
Multicomp
C10
10 pF Chip Capacitor
ATC100B100JT500XT
ATC
C11
10 nF Chip Capacitor
GRM319R72A103KA01D
Murata
C12
47 nF Chip Capacitor
GRM31MR72A473KA01L
Murata
C13
470 nF Chip Capacitor
GRM31MR72A474KA35L
Murata
Coax1
35  Flex Cable, 11.02, 3 Turns
HSF-141C-35
Hongsen Cable
L1
47 nH Inductor
1812SMS47NJLC
Coilcraft
L2, L3
Toroid Core, 10 Turns, 22 AWG Magnetic Wire
11-750-K / 8077
Ferronics/Beldon
Q1
RF Power LDMOS Transistor
MRFE6VP5150NR1
Freescale
R1
2.2 K, 1/8 W Chip Resistor
CRCW08052K20FKEA
Vishay
R2
390 , 1/8 W Chip Resistor
CRCW0805390RFKEA
Vishay
R3
10 , 1/8 W Chip Resistor
RK73H2ATTD10R0F
KOA Speer
R4
1.0 K, 1/8 W Chip Resistor
RR1220P-102-D
Susumu
R5
2.7 K, 1/8 W Chip Resistor
CRCW08052K70FKEA
Vishay
R6
200 , 1/8 W Chip Resistor
CRCW0805200RFKEA
Vishay
R7
5.0 K Multi-turn Cermet Trimmer Potentiometer
3224W-1-502E
Bourns
R8
10 , 1/4 W Chip Resistor
CRCW120610R0FKEA
Vishay
R9, R10
5.1 K, 1/2 W Chip Resistors
CRCW12105K10FKEA
Vishay
T1
61 Material Binocular Core Ferrite (1:1) with
24 AWG 1 Turn Primary, 24 AWG 1 Turn
Secondary, Hand Wound
2861000102
Fair-Rite
U1
Voltage Regulator 5 V, Micro8
LP2951ACDMR2G
ON Semiconductor
U2
NPN Bipolar Transistor
BC847ALT1G
ON Semiconductor
PCB
Rogers RO4350B, 0.030, r = 3.66
D58764
MTL
MRFE6VP5150NR1 MRFE6VP5150GNR1
12
RF Device Data
Freescale Semiconductor, Inc.
MRFE6VP5150NR1 MRFE6VP5150GNR1
RF Device Data
Freescale Semiconductor, Inc.
13
RF
INPUT
Z1
C5
C4
L1
Z2
T1
Z8
Z7
DUT
Z10
Z9
Z12
Z11
Z14
Z13
L2
L3
C9
C8
Z16
Z15
C11
C10
C12
COAX1
C13
C14
Z17
C6
0.230  0.080 Microstrip
0.280  0.080 Microstrip
0.680  0.080 Microstrip
0.310  0.170 Microstrip
0.270  0.200 Microstrip
0.380  0.630 Microstrip
Z2*
Z3*
Z4
Z5, Z6
Z7, Z8
Description
Z1
Microstrip
0.480  0.150 Microstrip
0.240  0.210 Microstrip
0.680  0.150 Microstrip
2.060  0.027 Microstrip
0.240  0.180 Microstrip
Description
* Line length includes microstrip bends
Z17
Z15, Z16
Z13*, Z14*
Z11*, Z12*
Z9, Z10
Microstrip
VDD
RF
OUTPUT
C7
+
Table 11. MRFE6VP51510NR1 Broadband Reference Circuit Microstrips — 87.5–108 MHz
Figure 14. MRFE6VP5150NR1 Broadband Reference Circuit Schematic — 87.5–108 MHz
Z6
Z5
Z4
Z3
R8
Bias Regulator and
Temperature Compensation
TYPICAL CHARACTERISTICS — 87.5–108 MHz
BROADBAND REFERENCE CIRCUIT
24
Gps, POWER GAIN (dB)
80
D
70
23.5
60
23
50
22.5
40
Gps
22
21.5
200
175
Pout
21
150
20.5
125
20
86
88
90
92
94
96
D, DRAIN
EFFICIENCY (%)
90
VDD = 50 Vdc, Pin = 1.0 W, IDQ(A+B) = 100 mA
24.5
100
98 100 102 104 106 108 110
Pout, OUTPUT
POWER (WATTS)
25
f, FREQUENCY (MHz)
Figure 15. Power Gain, Drain Efficiency and CW Output
Power versus Frequency at a Constant Input Power
200
VDD = 50 Vdc
Pin = 0.25 W
Pout, OUTPUT POWER (WATTS)
Pout, OUTPUT POWER (WATTS)
200
150
f = 108 MHz
100
98 MHz
50
87.5 MHz
VDD = 50 Vdc
0.5 W
Pin = 1.0
150
100
f = 108 MHz
98 MHz
50
87.5 MHz
0
0
0.5
1
1.5
2
2.5
3
3.5
0
0
0.5
1
1.5
2
2.5
3
3.5
VGS, GATE--SOURCE VOLTAGE (VOLTS)
VGS, GATE--SOURCE VOLTAGE (VOLTS)
Figure 16. CW Output Power versus Gate--Source
Voltage at a Constant Input Power
Figure 17. CW Output Power versus Gate--Source
Voltage at a Constant Input Power
MRFE6VP5150NR1 MRFE6VP5150GNR1
14
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS — 87.5–108 MHz
BROADBAND REFERENCE CIRCUIT
Pout, OUTPUT POWER (dBm)
54
52
50
f = 108 MHz
98 MHz
48
87.5 MHz
46
44
VDD = 50 Vdc
lDQ(A+B) = 100 mA
20
22
24
26
28
30
Pin, INPUT POWER (dBm)
f
(MHz)
P1dB
(W)
P3dB
(W)
87.5
164
189
98
145
183
108
130
165
Figure 18. CW Output Power versus Input Power
90
Gps, POWER GAIN (dB)
28
26
24
D
f = 108 MHz
98 MHz
70
87.5 MHz
60
108 MHz
22
80
Gps
50
98 MHz
20
40
87.5 MHz
18
30
D, DRAIN EFFICIENCY (%)
30
VDD = 50 Vdc, lDQ(A+B) = 100 mA
30
200
100
Pout, OUTPUT POWER (WATTS)
Figure 19. Power Gain and Drain Efficiency
versus CW Output Power
MRFE6VP5150NR1 MRFE6VP5150GNR1
RF Device Data
Freescale Semiconductor, Inc.
15
87.5–108 MHz BROADBAND REFERENCE CIRCUIT
Zsource
Zo = 50 
f = 108 MHz
f = 87.5 MHz
f = 87.5 MHz
Zload
f = 108 MHz
VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 150 W CW
f
MHz
Zsource

Zload

87.5
20.3 + j26.9
35.3 + j15.9
92
20.4 + j29.6
35.2 + j17.1
96
20.6 + j31.9
35.1 + j17.3
100
20.8 + j34.1
33.2 + j17.4
104
21.0 + j36.5
31.7 + j19.5
108
21.4 + j38.6
30.6 + j21.4
Zsource = Test circuit impedance as measured from
gate to gate, balanced configuration.
Zload
50 
= Test circuit impedance as measured
from drain to drain, balanced configuration.
Input
Matching
Network
+
Device
Under
Test
--
-Z
source
Output
Matching
Network
50 
+
Z
load
Figure 20. Broadband Series Equivalent Source and Load Impedance — 87.5–108 MHz
MRFE6VP5150NR1 MRFE6VP5150GNR1
16
RF Device Data
Freescale Semiconductor, Inc.
HARMONIC MEASUREMENTS — 87.5–108 MHz
BROADBAND REFERENCE CIRCUIT
10
0
1 [T1] 100 MHz
1
1 [T1] 100 MHz --39.8 dB
2 [T1] 200 MHz --20.1 dB
--10
3 [T1] 300 MHz --45.5 dB
2
--20
4 [T1] 400 MHz --35.6 dB
--30
--40
H3
H4
H5
H2
(200 MHz) (300 MHz) (400 MHz) (500 MHz)
--39.8 dB
--20.1 dB
--45.5 dB
--35.6 dB
4
1
3
--50
--60
--70
--80
--90
Start 0 Hz
60 Hz
Stop 600 Hz
Figure 21. 100 MHz Harmonics @ 150 W
MRFE6VP5150NR1 MRFE6VP5150GNR1
RF Device Data
Freescale Semiconductor, Inc.
17
PACKAGE DIMENSIONS
MRFE6VP5150NR1 MRFE6VP5150GNR1
18
RF Device Data
Freescale Semiconductor, Inc.
MRFE6VP5150NR1 MRFE6VP5150GNR1
RF Device Data
Freescale Semiconductor, Inc.
19
MRFE6VP5150NR1 MRFE6VP5150GNR1
20
RF Device Data
Freescale Semiconductor, Inc.
MRFE6VP5150NR1 MRFE6VP5150GNR1
RF Device Data
Freescale Semiconductor, Inc.
21
MRFE6VP5150NR1 MRFE6VP5150GNR1
22
RF Device Data
Freescale Semiconductor, Inc.
MRFE6VP5150NR1 MRFE6VP5150GNR1
RF Device Data
Freescale Semiconductor, Inc.
23
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS
Refer to the following resources to aid your design process.
Application Notes
 AN1955: Thermal Measurement Methodology of RF Power Amplifiers
 AN1643: RF LDMOS Power Modules for GSM Base Station Application: Optimum Biasing Circuit
Engineering Bulletins
 EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
 Electromigration MTTF Calculator
 RF High Power Model
Development Tools
 Printed Circuit Boards
For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the
Software & Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
Description
0
May 2014
 Initial Release of Data Sheet
1
July 2014
 Table 10, Broadband Reference Circuit Component Designations and Values — 87.5–108 MHz: updated
R2, R9 and R10 resistors, p. 12
MRFE6VP5150NR1 MRFE6VP5150GNR1
24
RF Device Data
Freescale Semiconductor, Inc.
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their
respective owners.
E 2014 Freescale Semiconductor, Inc.
MRFE6VP5150NR1 MRFE6VP5150GNR1
Document
Number:
RF
Device
Data MRFE6VP5150N
Rev. 1, 7/2014Semiconductor, Inc.
Freescale
25