Data Sheet

Freescale Semiconductor
Technical Data
Document Number: AFV121KH
Rev. 0, 11/2015
RF Power LDMOS Transistors
High Ruggedness N--Channel
Enhancement--Mode Lateral MOSFETs
These RF power transistors are designed for pulse applications operating at
frequencies from 960 to 1215 MHz, such as distance measuring equipment
(DME), secondary radars and high power transponders for air traffic control.
These devices are suitable for use in pulse applications with large duty cycles
and long pulses, including Mode S ELM.
Typical Short Pulse Performance: In 960–1215 MHz reference circuit, VDD = 50 Vdc,
AFV121KH
AFV121KHS
AFV121KGS
960–1215 MHz, 1000 W PEAK, 50 V
AIRFAST RF POWER LDMOS
TRANSISTORS
IDQ = 100 mA, Pin = 25 W
Frequency
(MHz)
960
1030
Pout
(W)
Gps
(dB)
D
(%)
1390 Peak
17.5
51.1
Signal Type
Pulse
(128 sec, 10% Duty Cycle)
1410 Peak
17.5
51.8
1090
1370 Peak
17.4
52.2
1215
1230 Peak
16.9
55.8
Typical Long Pulse Performance: In 960–1215 MHz reference circuit, VDD = 50 Vdc,
IDQ = 100 mA, Pin = 25 W
Frequency
(MHz)
Pout
(W)
Gps
(dB)
D
(%)
1160 Peak
16.6
50.8
1190 Peak
16.8
52.1
1090
1210 Peak
16.8
49.2
1215
1060 Peak
16.2
50.6
960
1030
Signal Type
Pulse
(2 msec, 10% Duty Cycle)
NI--1230H--4S
AFV121KH
NI--1230S--4S
AFV121KHS
NI--1230GS--4L
AFV121KGS
Load Mismatch/Ruggedness
Frequency
(MHz)
1030 (1)
Signal Type
VSWR
Pulse
(128 sec, 10%
Duty Cycle)
> 20:1 at all
Phase Angles
Pin
(W)
Test
Voltage
25 Peak
(3 dB
Overdrive)
50
Result
Gate A 3
1 Drain A
Gate B 4
2 Drain B
No Device
Degradation
1. Measured in 960--1215 MHz reference circuit.
Features
 Internally Input and Output Matched for Broadband Operation and Ease of Use
 Device Can Be Used Single--Ended, Push--Pull, or in a Quadrature
Configuration
 Qualified up to a Maximum of 50 VDD Operation
 High Ruggedness, Handles > 20:1 VSWR
 Integrated ESD Protection with Greater Negative Voltage Range for Improved
Class C Operation and Gate Voltage Pulsing
 Characterized with Series Equivalent Large--Signal Impedance Parameters
Typical Applications
(Top View)
Note: The backside of the package is the
source terminal for the transistors.
Figure 1. Pin Connections
 Air Traffic Control Systems (ATC), Including Ground--based Secondary Radars
such as Mode S ELM Interrogators
 Distance Measuring Equipment (DME)
 Mode S Transponders, Including:
– Traffic Alert and Collision Avoidance Systems (TCAS)
– Automatic Dependent Surveillance--Broadcast In and Out (ADS--B)
Using, e.g., 1090 Extended Squitter or Universal Access Transponder (UAT)
 Freescale Semiconductor, Inc., 2015. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
AFV121KH AFV121KHS AFV121KGS
1
Table 1. Maximum Ratings
Symbol
Value
Unit
Drain--Source Voltage
Rating
VDSS
–0.5, +112
Vdc
Gate--Source Voltage
VGS
–6.0, +10
Vdc
Storage Temperature Range
Tstg
– 65 to +150
C
TC
–40 to 150
C
TJ
–40 to 225
C
Symbol
Value (2,3)
Unit
Case Operating Temperature Range
Operating Junction Temperature
Range (1,2)
Table 2. Thermal Characteristics
Characteristic
Thermal Impedance, Junction to Case
Pulse: Case Temperature 64C, 1000 W Peak, 128 sec Pulse Width,
10% Duty Cycle, 50 Vdc, IDQ = 100 mA, 1030 MHz (4)
Pulse: Case Temperature 65C, 1000 W Peak, 2 msec Pulse Width,
10% Duty Cycle, 50 Vdc, IDQ = 100 mA, 1030 MHz (4)
ZJC
C/W
0.017
0.050
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
2, passes 2500 V
Machine Model (per EIA/JESD22--A115)
B, passes 250 V
Charge Device Model (per JESD22--C101)
IV, passes 2000 V
Table 4. Electrical Characteristics (TA = 25C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
IGSS
—
—
1
Adc
V(BR)DSS
112
—
—
Vdc
Zero Gate Voltage Drain Leakage Current
(VDS = 50 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 112 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Gate Threshold Voltage (5)
(VDS = 10 Vdc, ID = 520 Adc)
VGS(th)
1.3
1.8
2.3
Vdc
Gate Quiescent Voltage (6)
(VDD = 50 Vdc, ID = 100 mAdc, Measured in Functional Test)
VGS(Q)
1.5
2.0
2.5
Vdc
Drain--Source On--Voltage (5)
(VGS = 10 Vdc, ID = 2.6 Adc)
VDS(on)
0.05
0.17
0.35
Vdc
Crss
—
2.5
—
pF
Characteristic
Off Characteristics
(5)
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
Drain--Source Breakdown Voltage
(VGS = 0 Vdc, ID = 10 A)
On Characteristics
Dynamic Characteristics (5)
Reverse Transfer Capacitance
(VDS = 50 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
1.
2.
3.
4.
5.
6.
Continuous use at maximum temperature will affect MTTF.
MTTF calculator available at http://www.freescale.com/rf/calculators.
Refer to AN1955 Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf and search for AN1955.
Measured in 960--1215 MHz reference circuit.
Each side of device measured separately.
Measurement made with device in push--pull configuration.
(continued)
AFV121KH AFV121KHS AFV121KGS
2
RF Device Data
Freescale Semiconductor, Inc.
Table 4. Electrical Characteristics (TA = 25C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Functional Tests (1,2) (In Freescale Narrowband Production Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 1000 W
Peak (100 W Avg.), f = 1030 MHz, 128 sec Pulse Width, 10% Duty Cycle
Power Gain
Gps
18.5
19.6
22.0
dB
Drain Efficiency
D
55.5
59.7
—
%
Input Return Loss
IRL
—
–15
–9
dB
Table 5. Load Mismatch/Ruggedness (In Freescale Narrowband Production Test Fixture, 50 ohm system) IDQ(A+B) = 100 mA
Frequency
(MHz)
1030
Signal Type
VSWR
Pin
(W)
Pulse
(128 sec,
10% Duty Cycle)
> 20:1 at all
Phase Angles
20.2 Peak
(3 dB Overdrive)
Test Voltage, VDD
Result
50
No Device
Degradation
Table 6. Ordering Information
Device
Tape and Reel Information
AFV121KHR5
AFV121KHSR5
AFV121KGSR5
Package
NI--1230H--4S, Eared
R5 Suffix = 50 Units, 56 mm Tape Width, 13--inch Reel
NI--1230S--4S, Earless
NI--1230GS--4L, Gull Wing
1. Measurement made with device in push--pull configuration.
2. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull
wing (GS) parts.
AFV121KH AFV121KHS AFV121KGS
RF Device Data
Freescale Semiconductor, Inc.
3
TYPICAL CHARACTERISTICS
Measured with 30 mV(rms)ac @ 1 MHz
VGS = 0 Vdc
NORMALIZED VGS(Q)
C, CAPACITANCE (pF)
100
10
Crss
1
0
10
20
30
40
50
1.08
1.07
IDQ(A+B) = 100 mA
1.06
1.05
1.04
500 mA
1.03
1.02
1500 mA
1.01
1
0.99
0.98
0.97
0.96
0.95
0.94
0.93
0.92
–50
–25
0
25
VDD = 50 Vdc
50
75
100
TC, CASE TEMPERATURE (C)
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
Note: Each side of device measured separately.
IDQ (mA)
Figure 2. Capacitance versus Drain--Source Voltage
Slope (mV/C)
100
–2.36
500
–2.26
1500
–1.84
Figure 3. Normalized VGS versus Quiescent
Current and Case Temperature
109
VDD = 50 Vdc
Pulse Width = 128 sec
10% Duty Cycle
MTTF (HOURS)
108
ID = 26.74 Amps
107
34.04 Amps
39.03 Amps
106
105
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (C)
Note: MTTF value represents the total cumulative operating time
under indicated test conditions.
MTTF calculator available at http://www.freescale.com/rf/calculators
Figure 4. MTTF versus Junction Temperature -- Pulse
AFV121KH AFV121KHS AFV121KGS
4
RF Device Data
Freescale Semiconductor, Inc.
960–1215 MHz REFERENCE CIRCUIT — 3  4 (7.62 cm  10.16 cm)
Table 7. 960–1215 MHz Performance (In Freescale Reference Circuit, 50 ohm system)
VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pin = 25 W
Gps
(dB)
D
(%)
Pout
(W)
17.5
51.1
1390 Peak
17.5
51.8
1410 Peak
1090
17.4
52.2
1370 Peak
1215
16.9
55.8
1230 Peak
Frequency
(MHz)
960
1030
Signal Type
Pulse
(128 sec, 10% Duty Cycle)
Table 8. Load Mismatch/Ruggedness (In Freescale 960–1215 MHz Reference Circuit, 50 ohm system) IDQ(A+B) = 100 mA
Frequency
(MHz)
1030
Signal Type
VSWR
Pin
(W)
Pulse
(128 sec,
10% Duty Cycle)
> 20:1 at all
Phase Angles
25 Peak
(3 dB Overdrive)
Test Voltage, VDD
Result
50
No Device
Degradation
AFV121KH AFV121KHS AFV121KGS
RF Device Data
Freescale Semiconductor, Inc.
5
960–1215 MHz REFERENCE CIRCUIT — 3  4 (7.62 cm  10.16 cm)
+
C16
C23
C22
+
+
C24
C25
COAX1
C17
C18
AFV121KH
Rev. 0
COAX3
C27
C26
R1
C1
C4
C3
C34
C8
C9
C10
C11
L1
C5
Q1
C12
C13
C14
C15
C7
C2
R2
C6
L2
C31
C21
C20
C33
COAX4
C32
COAX2
D68142
+
+
C30
+
C28
C19
C29
Figure 5. AFV121KH(HS) 960–1215 MHz Reference Circuit Component Layout
Table 9. AFV121KH(HS) 960–1215 MHz Reference Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1, C2
5.6 pF Chip Capacitors
ATC100B5R6CT500XT
ATC
C3
4.3 pF Chip Capacitor
ATC100B4R3CT500XT
ATC
C4, C6
10 pF Chip Capacitors
ATC800B100JT500XT
ATC
C5
4.7 pF Chip Capacitor
ATC800B4R7CT500XT
ATC
C7
5.1 pF Chip Capacitor
ATC800B5R1CT500XT
ATC
C8, C9 C10, C11, C12, C13,
C14, C15
2.2 pF Chip Capacitors
ATC800B2R2BT500XT
ATC
C16, C19
22 F, 25 V Tantalum Capacitors
TPSD226M025R0200
AVX
C17, C20
0.22 F Chip Capacitors
C1210C224K1RACTU
Kemet
C18, C21, C24, C30
36 pF Chip Capacitors
ATC100B360JT500XT
ATC
C22, C23, C28, C29
470 F, 63 V Electrolytic Capacitors
MCGPR63V477M13X26-RH
Multicomp
C25, C26, C31, C32
2.2 F Chip Capacitors
C3225X7R2A225K230AB
TDK
C27, C33
0.022 F Chip Capacitors
C1825C223K1GACTU
Kemet
C34
1.7 pF Chip Capacitor
ATC100B1R7BT500XT
ATC
Coax1, Coax2, Coax3, Coax4
35  Flex Cable 1.9”
HSF-141C-35
Hongsen Cable
L1, L2
6.6 H, 2 Turn Inductors
GA3093-ALC
Coilcraft
Q1
RF Power LDMOS Transistor
AFV121KHR5
Freescale
R1,R2
1000 ,1/2 W Chip Resistors
CRCW20101K00FKEF
Vishay
PCB
Arlon 450 0.030”, r = 4.5
D68142
MTL
AFV121KH AFV121KHS AFV121KGS
6
RF Device Data
Freescale Semiconductor, Inc.
60
55
50
45
40
35
–4
--5
--6
--7
--8
--9
--10
--11
1300
D
Gps
VDD = 50 Vdc, Pin = 25 W, IDQ(A+B) = 100 mA
Pulse Width = 128 sec, Duty Cycle = 10%
IRL
900
950
1000
1050
1100
1150
1200
1250
D, DRAIN
EFFICIENCY (%)
19
18.5
18
17.5
17
16.5
16
15.5
15
14.5
14
13.5
13
12.5
IRL, INPUT RETURN
LOSS (dB)
Gps, POWER GAIN (dB)
TYPICAL CHARACTERISTICS — 960–1215 MHz
REFERENCE CIRCUIT
f, FREQUENCY (MHz)
Figure 6. Power Gain, Drain Efficiency and IRL
versus Frequency at a Constant Input Power
VDD = 50 Vdc, IDQ(A+B) = 100 mA
Pulse Width = 128 sec, Duty Cycle = 10%
Gps, POWER GAIN (dB)
22
1215 MHz
Gps
20
70
1215 MHz
1090 MHz
D
1030 MHz
960 MHz
18
1090 MHz
16
50
40
30
1030 MHz
14
60
20
960 MHz
D DRAIN EFFICIENCY (%)
24
10
12
10
0
200
400
600
800
1000 1200
0
1400 1600 1800
Pout, OUTPUT POWER (WATTS) PEAK
Figure 7. Power Gain and Drain Efficiency versus
Output Power
70
Pout
1250
60
D
1000
50
750
40
30
500
250
900
VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pin = 25 W
Pulse Width = 128 sec, Duty Cycle = 10%
950
1000
1050
1100
1150
1200
1250
D, DRAIN EFFICIENCY (%)
Pout, OUTPUT POWER (WATTS) PEAK
1500
20
1300
f, FREQUENCY (MHz)
Figure 8. Output Power and Drain Efficiency versus
Frequency at a Constant Input Power
AFV121KH AFV121KHS AFV121KGS
RF Device Data
Freescale Semiconductor, Inc.
7
960–1215 MHz REFERENCE CIRCUIT
f = 960 MHz
Z0 = 5 
Zload
f = 1215 MHz
Zsource
f = 1215 MHz
f = 960 MHz
f
MHz
Zsource

Zload

960
2.3 – j4.3
1.7 – j2.3
1030
3.1 – j2.4
1.6 – j1.3
1090
3.9 – j2.0
1.4 – j0.8
1215
4.9 – j0.8
0.8 + j2.5
Zsource = Test circuit impedance as measured from
gate to gate, balanced configuration.
Zload
50 
Input
Matching
Network
= Test circuit impedance as measured
from drain to drain, balanced configuration.
+
Device
Under
Test
--
--
+
Zsource
Zload
Output
Matching
Network
50 
Figure 9. Series Equivalent Source and Load Impedance — 960–1215 MHz
AFV121KH AFV121KHS AFV121KGS
8
RF Device Data
Freescale Semiconductor, Inc.
1030 MHz NARROWBAND PRODUCTION TEST FIXTURE — 4  5 (10.16 cm  12.70 cm)
Table 10. 1030 MHz Narrowband Performance (1) VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 1000 W Peak (100 W Avg.)
f = 1030 MHz, 128 sec Pulse Width, 10% Duty Cycle
Characteristic
Symbol
Min
Typ
Max
Unit
Gps
18.5
19.6
22.0
dB
Drain Efficiency
D
55.5
59.7
—
%
Input Return Loss
IRL
—
–15
–9
dB
Power Gain
1. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing
(GN) parts.
Table 11. Load Mismatch/Ruggedness (In Freescale Narrowband Production Test Fixture, 50 ohm system) IDQ(A+B) = 100 mA
Frequency
(MHz)
1030
Signal Type
VSWR
Pin
(W)
Pulse
(128 sec,
10% Duty Cycle)
> 20:1 at all
Phase Angles
20.2 Peak
(3 dB Overdrive)
Test Voltage, VDD
Result
50
No Device
Degradation
AFV121KH AFV121KHS AFV121KGS
RF Device Data
Freescale Semiconductor, Inc.
9
1030 MHz NARROWBAND PRODUCTION TEST FIXTURE — 4  5 (10.16 cm  12.70 cm)
C1
C27
B1 C3
AFV121KH
Rev. 3
C5
C7
D67236
C9
COAX2
C12
C11
R2
B2 C4
C8
C6
C21*
C22*
C23*
C17*
C18*
C24*
C25*
C26*
CUT OUT AREA
C10
C2
C19
C13
R1
COAX1
C29
L1
COAX3
L2
COAX4
C15
C16
C14
C20
C28
C30
* C17, C18, C21, C22, C23, C24, C25 and C26 are mounted vertically.
Figure 10. AFV121KH(HS) Narrowband Test Circuit Component Layout — 1030 MHz
Table 12. AFV121KH(HS) Narrowband Test Circuit Component Designations and Values — 1030 MHz
Part
Description
Part Number
Manufacturer
B1, B2
Short RF Bead
2743019447
Fair-Rite
C1, C2
22 F, 35 V Tantalum Capacitors
T491X226K035AT
Kemet
C3, C4
2.2 F Chip Capacitors
C1825C225J5RACTU
Kemet
C5, C6
0.1 F Chip Capacitors
CDR33BX104AKWS
AVX
C7, C8
36 pF Chip Capacitors
ATC100B360JT500XT
ATC
C9
2.7 pF Chip Capacitor
ATC100B2R7CT500XT
ATC
C10, C11
30 pF Chip Capacitors
ATC100B300JT500XT
ATC
C12
8.2 pF Chip Capacitor
ATC100B8R2CT500XT
ATC
C13, C14
36 pF Chip Capacitors
ATC100B360JT500XT
ATC
C15, C16
7.5 pF Chip Capacitors
ATC100B7R5CT500XT
ATC
C17
4.7 pF Chip Capacitor
ATC100B4R7CT500XT
ATC
C18
4.3 pF Chip Capacitor
ATC100B4R3CT500XT
ATC
C19, C20
0.01 F Chip Capacitors
C1825C103K1GACTU
Kemet
C21, C22, C23, C24, C25, C26
43 pF Chip Capacitors
ATC100B430JT500XT
ATC
C27, C28, C29, C30
470 F, 63 V Electrolytic Capacitors
MCGPR63V477M13X26-RH
Multicomp
Coax1, Coax2, Coax3, Coax4
35  Flex Cable 1.98
HSF-141C-35
Hongsen Cable
L1, L2
12 H, 3 Turn Inductors
GA3094-ALC
Coilcraft
R1, R2
1.1 k, 1/4 W Chip Resistors
CRCW12061K10FKEA
Vishay
PCB
Arlon, AD255A, 0.03, r = 2.55
D67236
MTL
AFV121KH AFV121KHS AFV121KGS
10
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS — 1030 MHz
Gps, POWER GAIN (dB)
21
20
80
62
70
60
60
19
50
Gps
18
17
40
30
D
Pout, OUTPUT POWER PEAK
VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 1030 MHz
Pulse Width = 128 sec, Duty Cycle = 10%
D, DRAIN EFFICIENCY (%)
22
VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 1030 MHz
Pulse Width = 128 sec, Duty Cycle = 10%
58
56
54
52
16
20
15
10
48
0
46
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
14
30
1000
100
50
Pin, INPUT POWER (dBm) PEAK
Pout, OUTPUT POWER (WATTS) PEAK
Figure 11. Power Gain and Drain Efficiency
versus Output Power
f
(MHz)
P1dB
(W)
P3dB
(W)
1030
1002
1115
Figure 12. Output Power versus Input Power
60
IDQ(A+B) = 700 mA
19
50
500 mA
18
40
300 mA
17
30
16
20
100 mA
15
Pout, OUTPUT POWER (WATTS) PEAK
14
100
1000
IDQ(A + B) = 100 mA, f = 1030 MHz
Pulse Width = 128 sec, Duty Cycle = 10%
18
17
50 V
45 V
16
15
14
13
40 V
35 V
12
10
30
21
20
19
11
10
30
0
VDD = 30 V
100
1000
Pout, OUTPUT POWER (WATTS) PEAK
Pout, OUTPUT POWER (WATTS) PEAK
Figure 13. Power Gain versus Output Power
Figure 14. Power Gain versus Output Power
1500
1400 VDD = 50 Vdc, IDQ(A=B) = 100 mA, f = 1030 MHz
1300 Pulse Width = 128 sec, Duty Cycle = 10%
1200
1100
TC = –40_C
25_C
1000
900
800
85_C
700
600
500
400
300
200
100
0
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
Pin, INPUT POWER (dBm) PEAK
Figure 15. Output Power versus Input Power
24
80
23 VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 1030 MHz
22 Pulse Width = 128 sec, Duty Cycle = 10%
TC = –40_C 70
21
20
60
Gps
19
50
18 TC = –40_C
17
85_C
40
16
15 25_C
25_C
14
30
13
D
20
12 85_C
11
10
10
9
0
8
30
100
1000
D, DRAIN EFFICIENCY (%)
20
70
Gps, POWER GAIN (dB)
Gps, POWER GAIN (dB)
21
22
80
VDD = 50 Vdc, f = 1030 MHz
Pulse Width = 128 sec, Duty Cycle = 10%
Gps, POWER GAIN (dB)
22
Pout, OUTPUT POWER (WATTS) PEAK
Figure 16. Power Gain and Drain Efficiency versus
Output Power
AFV121KH AFV121KHS AFV121KGS
RF Device Data
Freescale Semiconductor, Inc.
11
1030 MHz NARROWBAND PRODUCTION TEST FIXTURE
f
MHz
Zsource

Zload

1030
2.40 -- j3.73
1.9 + j1.00
Zsource = Test circuit impedance as measured from
gate to gate, balanced configuration.
Zload
50 
Input
Matching
Network
= Test circuit impedance as measured
from drain to drain, balanced configuration.
+
Device
Under
Test
--
--
+
Zsource
Zload
Output
Matching
Network
50 
Figure 17. Narrowband Series Equivalent Source and Load Impedance — 1030 MHz
AFV121KH AFV121KHS AFV121KGS
12
RF Device Data
Freescale Semiconductor, Inc.
PACKAGE DIMENSIONS
AFV121KH AFV121KHS AFV121KGS
RF Device Data
Freescale Semiconductor, Inc.
13
AFV121KH AFV121KHS AFV121KGS
14
RF Device Data
Freescale Semiconductor, Inc.
AFV121KH AFV121KHS AFV121KGS
RF Device Data
Freescale Semiconductor, Inc.
15
AFV121KH AFV121KHS AFV121KGS
16
RF Device Data
Freescale Semiconductor, Inc.
AFV121KH AFV121KHS AFV121KGS
RF Device Data
Freescale Semiconductor, Inc.
17
AFV121KH AFV121KHS AFV121KGS
18
RF Device Data
Freescale Semiconductor, Inc.
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS
Refer to the following resources to aid your design process.
Application Notes
 AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages
 AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
 EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
 Electromigration MTTF Calculator
 RF High Power Model
 .s2p File
Development Tools
 Printed Circuit Boards
To Download Resources Specific to a Given Part Number:
1. Go to http://www.freescale.com/rf
2. Search by part number
3. Click part number link
4. Choose the desired resource from the drop down menu
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
Nov. 2015
Description
 Initial Release of Data Sheet
AFV121KH AFV121KHS AFV121KGS
RF Device Data
Freescale Semiconductor, Inc.
19
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. Airfast is a trademark of Freescale Semiconductor, Inc. All
other product or service names are the property of their respective owners.
E 2015 Freescale Semiconductor, Inc.
AFV121KH AFV121KHS AFV121KGS
Document Number: AFV121KH
Rev. 0, 11/2015
20
RF Device Data
Freescale Semiconductor, Inc.