Data Sheet

Freescale Semiconductor
Technical Data
Document Number: MMRF1316N
Rev. 0, 7/2014
RF Power LDMOS Transistor
N--Channel Enhancement--Mode Lateral MOSFET
This high ruggedness device is designed for use in high VSWR military,
aerospace and defense, radar and radio communications applications. It is an
unmatched input and output design allowing wide frequency range utilization,
between 1.8 and 600 MHz.
Typical Performance: VDD = 50 Vdc
Frequency
(MHz)
Signal Type
Pout
(W)
Gps
(dB)
D
(%)
87.5--108 (1,3)
CW
361
23.8
80.1
230
(2)
CW
300
25.0
70.0
230
(2)
Pulse (100 sec, 20%
Duty Cycle)
300 Peak
27.0
71.0
MMRF1316NR1
1.8–600 MHz, 300 W CW, 50 V
WIDEBAND
RF POWER LDMOS TRANSISTOR
Load Mismatch/Ruggedness
Frequency
(MHz)
Signal Type
98 (1)
CW
230 (2)
Pulse
(100 sec, 20%
Duty Cycle)
VSWR
Pin
(W)
Test
Voltage
> 65:1
at all Phase
Angles
3
(3 dB
Overdrive)
50
TO--270WB--4
PLASTIC
Result
No Device
Degradation
1.16 Peak
(3 dB
Overdrive)
1. Measured in 87.5–108 MHz broadband reference circuit.
2. Measured in 230 MHz narrowband test circuit.
3. The values shown are the minimum measured performance numbers across the
indicated frequency range.
Features







Wide Operating Frequency Range
Extreme Ruggedness
Unmatched Input and Output Allowing Wide Frequency Range Utilization
Integrated Stability Enhancements
Low Thermal Resistance
Integrated ESD Protection Circuitry
In Tape and Reel. R1 Suffix = 500 Units, 44 mm Tape Width, 13--inch Reel.
 Freescale Semiconductor, Inc., 2014. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
Gate A 3
2 Drain A
Gate B 4
1 Drain B
(Top View)
Note: Exposed backside of the package is
the source terminal for the transistors.
Figure 1. Pin Connections
MMRF1316NR1
1
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
–0.5, +133
Vdc
Gate--Source Voltage
VGS
–6.0, +10
Vdc
Storage Temperature Range
Tstg
–65 to +150
C
Case Operating Temperature Range
TC
–40 to +150
C
Operating Junction Temperature Range (1,2)
TJ
–40 to +225
C
Total Device Dissipation @ TC = 25C
Derate above 25C
PD
909
4.55
W
W/C
Table 2. Thermal Characteristics
Symbol
Value (2,3)
Unit
Thermal Resistance, Junction to Case
CW: Case Temperature 81C, 305 W CW, 50 Vdc, IDQ(A+B) = 100 mA, 230 MHz
RJC
0.22
C/W
Thermal Impedance, Junction to Case
Pulse: Case Temperature 59C, 300 W Peak, 100 sec Pulse Width,
20% Duty Cycle, 50 Vdc, IDQ(A+B) = 100 mA, 230 MHz
ZJC
0.034
C/W
Characteristic
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
2, passes 2500 V
Machine Model (per EIA/JESD22--A115)
A, passes 150 V
Charge Device Model (per JESD22--C101)
IV, passes 2000 V
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22--A113, IPC/JEDEC J--STD--020
Rating
Package Peak Temperature
Unit
3
260
C
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted)
Characteristic
Off Characteristics
Symbol
Min
Typ
Max
Unit
IGSS
—
—
1
Adc
133
140
—
Vdc
(4)
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
Drain--Source Breakdown Voltage
(VGS = 0 Vdc, ID = 50 mA)
V(BR)DSS
Zero Gate Voltage Drain Leakage Current
(VDS = 50 Vdc, VGS = 0 Vdc)
IDSS
—
—
5
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 100 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 960 Adc)
VGS(th)
1.8
2.3
2.8
Vdc
Gate Quiescent Voltage
(VDD = 50 Vdc, ID = 100 mAdc, Measured in Functional Test)
VGS(Q)
2.2
2.7
3.2
Vdc
Drain--Source On--Voltage
(VGS = 10 Vdc, ID = 2 Adc)
VDS(on)
—
0.26
—
Vdc
On Characteristics
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access
MTTF calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes -- AN1955.
4. Each side of device measured separately.
(continued)
MMRF1316NR1
2
RF Device Data
Freescale Semiconductor, Inc.
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Reverse Transfer Capacitance
(VDS = 50 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
1.4
—
pF
Output Capacitance
(VDS = 50 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
63
—
pF
Input Capacitance
(VDS = 50 Vdc, VGS = 0 Vdc  30 mV(rms)ac @ 1 MHz)
Ciss
—
168
—
pF
Dynamic Characteristics (1)
Functional Tests (2) (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 300 W Peak (60 W Avg.),
f = 230 MHz, 100 sec Pulse Width, 20% Duty Cycle
Power Gain
Gps
26.0
27.0
28.5
dB
Drain Efficiency
D
69.0
71.0
—
%
Input Return Loss
IRL
—
–20
–9
dB
Table 6. Load Mismatch/Ruggedness (In Freescale Test Fixture, 50 ohm system) IDQ(A+B) = 100 mA
Frequency
(MHz)
230
Signal Type
VSWR
Pin
(W)
Pulse
(100 sec, 20% Duty Cycle)
> 65:1 at all
Phase Angles
1.16 Peak
(3 dB Overdrive)
Test Voltage, VDD
Result
50
No Device Degradation
1. Each side of device measured separately.
2. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing
(GN) parts.
MMRF1316NR1
RF Device Data
Freescale Semiconductor, Inc.
3
TYPICAL CHARACTERISTICS
Measured with 30 mV(rms)ac @ 1 MHz
VGS = 0 Vdc
Ciss
100
NORMALIZED VGS(Q)
C, CAPACITANCE (pF)
500
Coss
10
1
10
20
30
40
1.01
1
0.99
50
VDD = 50 Vdc
IDQ(A+B) = 100 mA
2500 mA
0.98
0.97
0.96
0.95
0.94
--50
Crss
0
1.06
1.05 500 mA
1.04
1.03
1.02 1500 mA
--25
0
25
50
75
100
TC, CASE TEMPERATURE (C)
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
Note: Each side of device measured separately.
IDQ (mA)
Figure 2. Capacitance versus Drain--Source Voltage
Slope (mV/C)
100
–2.651
500
–2.158
1500
–1.977
2500
–1.787
Figure 3. Normalized VGS versus Quiescent
Current and Case Temperature
108
MTTF (HOURS)
VDD = 50 Vdc
ID = 6.38 Amps
107
106
8.04 Amps
9.61 Amps
105
104
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (C)
Note: MTTF value represents the total cumulative operating time
under indicated test conditions.
MTTF calculator available at http:/www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 4. MTTF versus Junction Temperature -- CW
MMRF1316NR1
4
RF Device Data
Freescale Semiconductor, Inc.
230 MHz NARROWBAND PRODUCTION TEST FIXTURE
C3 C5
B1
C1
C19
L1
COAX1
C11
L2
CUT OUT AREA
L3
L5
C20
C2
C8
C17
C14
C16
C15
C12
B2
COAX3
C13
C10
C29
C25
L4
C9
COAX2
C27
C21 C23
C7
C18
COAX4
C26
C22 C24
C28
C30
C4 C6
Figure 5. MMRF1316NR1 Narrowband Test Circuit Component Layout — 230 MHz
MMRF1316NR1
RF Device Data
Freescale Semiconductor, Inc.
5
230 MHz NARROWBAND PRODUCTION TEST FIXTURE
Table 7. MMRF1316NR1 Narrowband Test Circuit Component Designations and Values — 230 MHz
Part
Description
Part Number
Manufacturer
B1, B2
Small Ferrite Beads, Surface Mount
2743019447
Fair-Rite
C1, C2
22 F, 35 V Tantulum Capacitors
T491X226K035AT
Kemet
C3, C4
0.1 F Chip Capacitors
CDR33BX104AKWS
AVX
C5, C6
220 nF Chip Capacitors
C1812C224K5RACTU
Kemet
C7, C8
2.2 F Chip Capacitors
C1825C225J5RACTU
Kemet
C9, C10, C11, C12
1000 pF Chip Capacitors
ATC100B102JT50XT
ATC
C13
75 pF Chip Capacitor
ATC100B750JT500XT
ATC
C14, C15
680 pF Chip Capacitors
ATC100B681JT200XT
ATC
C16
82 pF Chip Capacitor
ATC100B820JT500XT
ATC
C17
8.2 pF Chip Capacitor
ATC100B8R2CT500XT
ATC
C18
11 pF Chip Capacitor
ATC100B110JT500XT
ATC
C19, C20
240 pF Chip Capacitors
ATC100B241JT200XT
ATC
C21, C22
0.10 F Chip Capacitors
C1812F104K1RACTU
Kemet
C23, C24
0.1 F Chip Capacitors
CDR33BX104AKWS
AVX
C25, C26
2.2 F Chip Capacitors
2225X7R225KJT3AB
ATC
C27, C28, C29, C30
470 F, 63 V Electrolytic Capacitors
MCGPR63V477M13X26-RH
Multicomp
Coax1, 2, 3, 4
25  Semi Rigid Coax, 2.4
UT-141C-25
Micro-Coax
L1, L2
12 nH Inductors, 3 Turns
GA3094-ALC
Coilcraft
L3
22 nH Inductor
1812SMS-22NJLC
Coilcraft
L4, L5
17.5 nH Inductors, 4 Turns
GA3095-ALC
Coilcraft
PCB
Arlon AD255A 0.030, r = 2.55
D49840
MTL
MMRF1316NR1
6
RF Device Data
Freescale Semiconductor, Inc.
MMRF1316NR1
RF Device Data
Freescale Semiconductor, Inc.
7
VGG
RF
INPUT Z1
VGG
B1
B2
C4
C3
Z3
Z2
C8
Z9
Z7
Z5
Z4
Z6
Z8
C7
L2
C12
Z11
Z10
C11
L1
Z13
L3
Z12
DUT
Z15
Z14
L5
Z19
Z17
Z21
Z20
Z16
Z18
C20
Z23
C13
Z22
C19
C22
C15
C14
C21
0.655  0.058 Microstrip
0.252  0.068 Microstrip
0.078  0.746 Microstrip
Z8, Z9
Z10, Z11
0.432  0.120 Microstrip
Z4, Z5
Z6*, Z7*
0.169  0.120 Microstrip
Z2, Z3
Description
0.366  0.082 Microstrip
Z1
Microstrip
C24
Z25
Z24
C23
C26
Z27
C16
Z26
C25
C28
+
C27
Microstrip
Z22, Z23
Z20, Z21
Z18, Z19
Z16, Z17
Z14, Z15
Z12, Z13
Description
1.040  0.230 Microstrip
0.060  0.230 Microstrip
0.329  0.150 Microstrip
0.347  0.150 Microstrip
0.289  0.522 Microstrip
0.361  0.746 Microstrip
Microstrip
C30
+
C17
Z29
0.100  0.082 Microstrip
0.110  0.082 Microstrip
0.155  0.082 Microstrip
0.199  0.230 Microstrip
0.057  0.230 Microstrip
Description
VDD
COAX4
Z28
* Line length include microstrip bends
Z30
Z29
Z28
Z26, Z27
Z24, Z25
VDD
COAX3
C29
+
Figure 6. MMRF1316NR1 Narrowband Test Circuit Schematic — 230 MHz
C6
C10
C9
C5
L4
Table 8. MMRF1316NR1 Narrowband Test Circuit Microstrips — 230 MHz
C2
+
COAX2
COAX1
C1
+
+
C18
RF
Z30 OUTPUT
TYPICAL CHARACTERISTICS — 230 MHz
Pout, OUTPUT POWER (WATTS) PEAK
350
VDD = 50 Vdc, f = 230 MHz
Pulse Width = 100 sec, 20% Duty Cycle
300
250
Pin = 0.64 W
200
Pin = 0.32 W
150
100
50
0
0
0.5
1
1.5
2
2.5
3.5
3
VGS, GATE--SOURCE VOLTAGE (VOLTS)
Figure 7. Output Power versus Gate--Source
Voltage at a Constant Input Power
VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz
30 Pulse Width = 100 sec, 20% Duty Cycle
54
52
50
48
46
44
29
18
20
22
24
26
28
28
60
600 mA
27
50
300 mA
26
25
40
900 mA
100 mA
20
10
500
100
Pin, INPUT POWER (dBm)
30
Gps
600 mA
100 mA 300 mA
23
10
32
30
D 70
IDQ(A+B) = 900 mA
24
42
80
D, DRAIN EFFICIENCY (%)
56
40
16
90
31
VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz
58 Pulse Width = 100 sec, 20% Duty Cycle
Gps, POWER GAIN (dB)
Pout, OUTPUT POWER (dBm) PEAK
60
Pout, OUTPUT POWER (WATTS) PEAK
f
(MHz)
P1dB
(W)
P3dB
(W)
230
313
370
Figure 9. Power Gain and Drain Efficiency
versus Output Power and Quiescent Current
Figure 8. Output Power versus Input Power
25_C 70
TC = --40_C
60
50
26
D
25 25_C
85_C
24 85_C
40
Gps
23
22
10
28
80
28
27
29
90
--40_C
100
30
27
Gps, POWER GAIN (dB)
Gps, POWER GAIN (dB)
29
VDD = 50 Vdc, IDQ(A+B) = 100 mA, f = 230 MHz
Pulse Width = 100 sec, 20% Duty Cycle
D, DRAIN EFFICIENCY (%)
30
26
25
24
45 V
23
40 V
22
35 V
21
20
20
10
500
19
50 V
VDD = 30 V
0
50
100
IDQ(A+B) = 100 mA, f = 230 MHz
Pulse Width = 100 sec, 20% Duty Cycle
150
200
250
300
350
Pout, OUTPUT POWER (WATTS) PEAK
Pout, OUTPUT POWER (WATTS) PEAK
Figure 10. Power Gain and Drain Efficiency
versus CW Output Power
Figure 11. Power Gain versus Output Power
and Drain--Source Voltage
400
MMRF1316NR1
8
RF Device Data
Freescale Semiconductor, Inc.
230 MHz NARROWBAND PRODUCTION TEST FIXTURE
VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 300 W Peak
f
MHz
Zsource

Zload

230
1.50 – j10.70
8.30 + j6.90
Zsource = Test circuit impedance as measured from
gate to gate, balanced configuration.
Zload
50 
Input
Matching
Network
= Test circuit impedance as measured from
drain to drain, balanced configuration.
+
-Zsource
Device
Under
Test
--
Output
Matching
Network
50 
+
Zload
Figure 12. Narrowband Series Equivalent Source and Load Impedance — 230 MHz
MMRF1316NR1
RF Device Data
Freescale Semiconductor, Inc.
9
87.5–108 MHz BROADBAND REFERENCE CIRCUIT
Table 9. 87.5–108 MHz Broadband Performance (In Freescale Reference Circuit, 50 ohm system)
VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pin = 1.5 W, CW
Frequency
(MHz)
Gps
(dB)
D
(%)
Pout
(W)
87.5
24.4
80.1
415
98
24.3
81.8
404
108
23.8
80.5
361
Table 10. Load Mismatch/Ruggedness (In Freescale Reference Circuit, 50 ohm system) IDQ(A+B) = 100 mA
Frequency
(MHz)
Signal Type
VSWR
Pin
(W)
98
CW
> 65:1
at all Phase Angles
3
(3 dB Overdrive)
Test Voltage, VDD
Result
50
No Device
Degradation
MMRF1316NR1
10
RF Device Data
Freescale Semiconductor, Inc.
87.5–108 MHz BROADBAND REFERENCE CIRCUIT
R5*
R6*
COAX1
R4*
C1*
C3*
R11*
R10*
C13
C12
R3*
R8
R7*
C2*
R1*
R2*
U1*
C16
+
C11
U2*
C4
C6
R9
T1
C14 C15
C5
Q1
C8
C17
L1
C9
C7
COAX3
COAX2
Note: Component number C10 is not used.
* Bias Regulator and Temperature Compensation. Refer to AN1643, RF LDMOS Power Modules for GSM Base Station
Application: Optimum Biasing Circuit. Go to http://www.freescale.com/rf. Select Documentation/Application Notes – AN1643.
Figure 13. MMRF1316NR1 Broadband Reference Circuit Component Layout — 87.5–108 MHz
MMRF1316NR1
RF Device Data
Freescale Semiconductor, Inc.
11
87.5–108 MHz BROADBAND REFERENCE CIRCUIT
Table 11. MMRF1316NR1 Broadband Reference Circuit Component Designations and Values — 87.5–108 MHz
Part
Description
Part Number
Manufacturer
C1, C2
1 F Chip Capacitors
GRM31CR72A105KA01L
Murata
C3
10 nF Chip Capacitor
ATC200B103KT50XT
ATC
C4
150 pF Chip Capacitor
ATC100B151JT300XT
ATC
C5
20 pF Chip Capacitor
ATC100B200JT500XT
ATC
C6, C8, C9
1000 pF Chip Capacitors
ATC200B102KT50XT
ATC
C7
560 pF Chip Capacitor
ATC100B561KT50XT
ATC
C11
10 nF Chip Capacitor
GCJ216R72A103KA01D
Murata
C12
47 nF Chip Capacitor
GCJ21BR72A473KA01L
Murata
C13
470 nF Chip Capacitor
GRM31MR72A474KA01L
Murata
C14, C15
10 F Chip Capacitors
C5750X7S2A106M230KB
TDK
C16
470 F, 63 V Electrolytic Capacitor
MCGPR63V477M13X26
Multicomp
C17
20 pF Chip Capacitor
ATC100B200JT500XT
ATC
Coax1, 2
35  Flex Cable, 4.72
HSF-141
Hongsen Cable
Coax3
50  Flex Cable, 6.3
SM141
Huber Suhner
L1
5 Turns, #16 AWG ID = 0.315/8 mm Inductor,
Hand Wound
Copper Wire
Q1
RF Power LDMOS Transistor
MMRF1316NR1
Freescale
R1
2.2 k, 1/8 W Chip Resistor
CRCW08052K20FKEA
Vishay
R2
390 , 1/8 W Chip Resistor
CRCW0805390RFKEA
Vishay
R3
10 , 1/8 W Chip Resistor
CRCW080510R0FKEA
Vishay
R4
1.0 k, 1/8 W Chip Resistor
CRCW08051K00FKEA
Vishay
R5
2.7 k, 1/8 W Chip Resistor
CRCW08052K70FKEA
Vishay
R6
200 , 1/8 W Chip Resistor
CRCW0805200RFKEA
Vishay
R7
5.0 k Multi-turn Cermet Trimmer Potentiometer
3224W-1-502E
Bourns
R8
10 , 1/4 W Chip Resistor
CRCW120610R0FKEA
Vishay
R9
240 , 1/4 W Chip Resistor
CRCW1206240RFKEA
Vishay
R10
4.7 k, 1/2 W Chip Resistor
CRCW12104K70FKEA
Vishay
R11
5.1 k, 1/2 W Chip Resistor
CRCW12105K10FKEA
Vishay
T1
61 Material Binocular Core Ferrite (9:1) with
24 AWG 1 Turn Primary, 24 AWG 3 Turns
Secondary, Hand Wound
2861000202
Fair-Rite
U1
Voltage Regulator 5 V, Micro8
LP2951ACDMR2G
ON Semiconductor
U2
NPN Bipolar Transistor
BC847ALT1G
ON Semiconductor
PCB
Rogers RO4350B, 0.030, r = 3.66
D59349
MTL
Note: Component number C10 is not used.
MMRF1316NR1
12
RF Device Data
Freescale Semiconductor, Inc.
MMRF1316NR1
RF Device Data
Freescale Semiconductor, Inc.
13
Z1
C4
Z2
T1
Z6
Z5
C5
R9
Z8
Z7
DUT
Z10
Z9
Z12
C17
Z11
COAX2
Z14
Z13
COAX1
C6
C7
L1
Z17
Z16
Z15
C9
C8
C11
Z19
Z18
C12
C13
0.430  0.150 Microstrip
0.320  0.080 Microstrip
0.680  0.080 Microstrip
0.310  0.170 Microstrip
0.195  0.240 Microstrip
0.380  0.630 Microstrip
0.380  0.630 Microstrip
Z2*
Z3*
Z4
Z5, Z6
Z7, Z8
Z9, Z10
Description
Z1
Microstrip
Description
0.190  0.170 Microstrip
0.230  0.300 Microstrip
0.200  0.100 Microstrip
0.680  0.140 Microstrip
0.170  0.210 Microstrip
0.400  0.240 Microstrip
* Line length includes microstrip bends
Z20
Z18, Z19
Z16*, Z17*
Z15
Z13, Z14
Z11, Z12
Microstrip
Table 12. MMRF1316NR1 Broadband Reference Circuit Microstrips — 87.5–108 MHz
Figure 14. MMRF1316NR1 Broadband Reference Circuit Schematic — 87.5–108 MHz
Note: Component number C10 is not used.
RF
INPUT
Z4
Z3
R8
Bias Regulator and
Temperature Compensation
C14
COAX3
C15
C16
+
Z20
VDD
RF
OUTPUT
TYPICAL CHARACTERISTICS — 87.5–108 MHz
BROADBAND REFERENCE CIRCUIT
80
Gps, POWER GAIN (dB)
25.5
D
25
70
24.5
60
24
50
23.5
450
Gps
23
400
22.5
22
86
350
Pout
88
90
92
94
96
300
98 100 102 104 106 108 110
D, DRAIN
EFFICIENCY (%)
90
VDD = 50 Vdc, Pin = 1.5 W, IDQ(A+B) = 100 mA
Pout, OUTPUT
POWER (WATTS)
26
f, FREQUENCY (MHz)
Figure 15. Power Gain, Drain Efficiency and CW Output
Power versus Frequency at a Constant Input Power
450
VDD = 50 Vdc
Pin = 0.5 W
300
250
f = 98 MHz
108 MHz
200
150
100
87.5 MHz
50
0
VDD = 50 Vdc
Pin = 1.0 W
400
Pout, OUTPUT POWER (WATTS)
Pout, OUTPUT POWER (WATTS)
350
350
300
f = 98 MHz
200
150
100
87.5 MHz
50
0
0.5
1
1.5
2
2.5
3
3.5
108 MHz
250
0
0
0.5
1
1.5
2
2.5
3
3.5
VGS, GATE--SOURCE VOLTAGE (VOLTS)
VGS, GATE--SOURCE VOLTAGE (VOLTS)
Figure 16. CW Output Power versus Gate--Source
Voltage at a Constant Input Power
Figure 17. CW Output Power versus Gate--Source
Voltage at a Constant Input Power
MMRF1316NR1
14
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS — 87.5–108 MHz
BROADBAND REFERENCE CIRCUIT
60
VDD = 50 Vdc
lDQ(A+B) = 100 mA
Pout, OUTPUT POWER (dBm)
58
56
54
52
f = 98 MHz
50
48
87.5 MHz
46
44
108 MHz
20
22
24
26
28
30
32
34
Pin, INPUT POWER (dBm)
f
(MHz)
P1dB
(W)
P3dB
(W)
87.5
346
429
98
293
379
108
240
355
Figure 18. CW Output Power versus Input Power
Gps, POWER GAIN (dB)
28
90
VDD = 50 Vdc
lDQ(A+B) = 100 mA
D
f = 98 MHz
26
24
70
87.5 MHz
108 MHz
60
22
20
18
16
30
80
Gps
108 MHz
98 MHz
40
30
87.5 MHz
50
50
D, DRAIN EFFICIENCY (%)
30
100
200
300
20
500
Pout, OUTPUT POWER (WATTS)
Figure 19. Power Gain and Drain Efficiency
versus CW Output Power
MMRF1316NR1
RF Device Data
Freescale Semiconductor, Inc.
15
87.5–108 MHz BROADBAND REFERENCE CIRCUIT
Zo = 25 
Zsource
f = 87.5 MHz
f = 108 MHz
f = 87.5 MHz
Zload
f = 108 MHz
VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 300 W CW
f
MHz
Zsource

Zload

87.5
10.3 + j14.4
13.7 + j8.15
92
11.5 + j15.8
14.2 + j8.09
96
12.6 + j17.0
14.7 + j8.04
100
13.9 + j18.2
15.2 + j7.99
104
15.5 + j19.6
15.7 + j7.94
108
17.2 + j20.9
16.2 + j7.89
Zsource = Test circuit impedance as measured from
gate to gate, balanced configuration.
Zload
50 
= Test circuit impedance as measured
from drain to drain, balanced configuration.
Input
Matching
Network
+
Device
Under
Test
--
-Z
source
Output
Matching
Network
50 
+
Z
load
Figure 20. Broadband Series Equivalent Source and Load Impedance — 87.5–108 MHz
MMRF1316NR1
16
RF Device Data
Freescale Semiconductor, Inc.
HARMONIC MEASUREMENTS — 87.5–108 MHz
BROADBAND REFERENCE CIRCUIT
Sweep 10 of 10
10.0
0.0
F1 100 MHz
H2 200 MHz --45.2 dB
H3 300 MHz --17.7 dB
H4 400 MHz --52.9 dB
H5 500 MHz --29.0 dB
Fundamental (F1)
--10.0
H3
--20.0
H5
11.984 sps
11.851 fps
--30.0
--40.0
H2
H4
--50.0
H5
H3
H4
H2
(200 MHz) (300 MHz) (400 MHz) (500 MHz)
–45.2 dB
–17.7 dB
–52.9 dB
–29.0 dB
--60.0
--70.0
Center: 300 MHz
Span: 600 MHz
Figure 21. 100 MHz Harmonics @ 300 W CW
MMRF1316NR1
RF Device Data
Freescale Semiconductor, Inc.
17
PACKAGE DIMENSIONS
MMRF1316NR1
18
RF Device Data
Freescale Semiconductor, Inc.
MMRF1316NR1
RF Device Data
Freescale Semiconductor, Inc.
19
MMRF1316NR1
20
RF Device Data
Freescale Semiconductor, Inc.
PRODUCT DOCUMENTATION AND SOFTWARE
Refer to the following resources to aid your design process.
Application Notes
 AN1955: Thermal Measurement Methodology of RF Power Amplifiers
 AN1643: RF LDMOS Power Modules for GSM Base Station Application: Optimum Biasing Circuit
Engineering Bulletins
 EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
 Electromigration MTTF Calculator
For Software, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software
& Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
July 2014
Description
 Initial Release of Data Sheet
MMRF1316NR1
RF Device Data
Freescale Semiconductor, Inc.
21
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their
respective owners.
E 2014 Freescale Semiconductor, Inc.
MMRF1316NR1
Document Number: MMRF1316N
Rev. 0, 7/2014
22
RF Device Data
Freescale Semiconductor, Inc.