Data Sheet

Freescale Semiconductor
Technical Data
Document Number: MMRF2004NB
Rev. 0, 12/2013
RF LDMOS Wideband Integrated
Power Amplifier
MMRF2004NBR1
The MMRF2004NB wideband integrated circuit is designed with on--chip
matching that makes it usable from 2300 to 2700 MHz. This multi--stage
structure is rated for 26 to 32 V operation and covers all typical cellular base
station modulation formats.
 Typical WiMAX Performance: VDD = 28 Vdc, IDQ1 = 77 mA, IDQ2 = 275 mA,
Pout = 4 W Avg., f = 2700 MHz, OFDM 802.16d, 64 QAM 3/4,
4 Bursts, 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01%
Probability on CCDF.
Power Gain — 28.5 dB
Power Added Efficiency — 17%
Device Output Signal PAR — 9 dB @ 0.01% Probability on CCDF
ACPR @ 8.5 MHz Offset — --50 dBc in 1 MHz Channel Bandwidth
Driver Applications
2500--2700 MHz, 4 W AVG., 28 V
WiMAX
RF LDMOS WIDEBAND
INTEGRATED POWER AMPLIFIER
 Typical WiMAX Performance: VDD = 28 Vdc, IDQ1 = 77 mA, IDQ2 = 275 mA,
Pout = 26 dBm Avg., f = 2700 MHz, OFDM 802.16d, 64 QAM 3/4,
4 Bursts, 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01%
Probability on CCDF.
Power Gain — 27.8 dB
Power Added Efficiency — 3.2%
Device Output Signal PAR — 9 dB @ 0.01% Probability on CCDF
ACPR @ 8.5 MHz Offset — --56 dBc in 1 MHz Channel Bandwidth
 Capable of Handling 10:1 VSWR, @ 32 Vdc, 2600 MHz, 40 W CW Output
Power (3 dB Input Overdrive from Rated Pout)
 Stable into a 5:1 VSWR. All Spurs Below --60 dBc @ 100 mW to 5 W CW Pout
 Typical Pout @ 1 dB Compression Point ≃ 25 W CW
Features
TO--272WB--16
PLASTIC
 100% PAR Tested for Guaranteed Output Power Capability
 Characterized with Series Equivalent Large--Signal Impedance Parameters
and Common Source S--Parameters
 On--Chip Matching (50 Ohm Input, DC Blocked)
 Integrated Quiescent Current Temperature Compensation with
Enable/Disable Function (1)
 Integrated ESD Protection
 225C Capable Plastic Package
 In Tape and Reel. R1 Suffix = 500 Units, 44 mm Tape Width, 13--inch Reel.
VDS1
RFin
VGS1
VGS2
RFout/VDS2
Quiescent Current
Temperature Compensation (1)
VDS1
Figure 1. Functional Block Diagram
GND
VDS1
NC
NC
NC
1
2
3
4
5
16
15
GND
NC
RFin
6
14
RFout/VDS2
NC
VGS1
VGS2
VDS1
GND
7
8
9
10
11
13
12
NC
GND
(Top View)
Note: Exposed backside of the package is
the source terminal for the transistors.
Figure 2. Pin Connections
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current
Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1977
or AN1987.
 Freescale Semiconductor, Inc., 2013. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
MMRF2004NBR1
1
Table 1. Maximum Ratings
Symbol
Value
Unit
Drain--Source Voltage
Rating
VDS
--0.5, +65
Vdc
Gate--Source Voltage
VGS
--0.5, +10
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
-- 65 to +150
C
TC
150
C
Case Operating Temperature
Operating Junction Temperature
(1)
Input Power
TJ
225
C
Pin
22
dBm
Symbol
Value (2)
Unit
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
RJC
C/W
WiMAX Application
(Case Temperature 75C, Pout = 4 W Avg.)
Stage 1, 28 Vdc, IDQ1 = 77 mA
Stage 2, 28 Vdc, IDQ2 = 275 mA
5.9
1.4
CW Application
(Case Temperature 81C, Pout = 25 W CW)
Stage 1, 28 Vdc, IDQ1 = 77 mA
Stage 2, 28 Vdc, IDQ2 = 275 mA
5.5
1.3
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
1B
Machine Model (per EIA/JESD22--A115)
A
Charge Device Model (per JESD22--C101)
II
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22--A113, IPC/JEDEC J--STD--020
Rating
Package Peak Temperature
Unit
3
260
C
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
Adc
Gate--Source Leakage Current
(VGS = 1.5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
Adc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 20 Adc)
VGS(th)
1.2
1.9
2.7
Vdc
Gate Quiescent Voltage
(VDS = 28 Vdc, IDQ1 = 77 mA)
VGS(Q)
—
2.7
—
Vdc
Fixture Gate Quiescent Voltage
(VDD = 28 Vdc, IDQ1 = 77 mAdc, Measured in Functional Test)
VGG(Q)
12.5
15.8
19.5
Vdc
Characteristic
Stage 1 -- Off Characteristics
Stage 1 -- On Characteristics
1. Continuous use at maximum temperature will affect MTTF.
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes -- AN1955.
(continued)
MMRF2004NBR1
2
RF Device Data
Freescale Semiconductor, Inc.
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
Adc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
Adc
Gate--Source Leakage Current
(VGS = 1.5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
Adc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 80 Adc)
VGS(th)
1.2
1.9
2.7
Vdc
Gate Quiescent Voltage
(VDS = 28 Vdc, IDQ2 = 275 mAdc)
VGS(Q)
—
2.7
—
Vdc
Fixture Gate Quiescent Voltage
(VDD = 28 Vdc, IDQ2 = 275 mAdc, Measured in Functional Test)
VGG(Q)
11
14
18
Vdc
Drain--Source On--Voltage
(VGS = 10 Vdc, ID = 800 mAdc)
VDS(on)
0.15
0.47
0.8
Vdc
Coss
—
111
—
pF
Stage 2 -- Off Characteristics
Stage 2 -- On Characteristics
Stage 2 -- Dynamic Characteristics (1)
Output Capacitance
(VDS = 28 Vdc  30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 77 mA, IDQ2 = 275 mA, Pout = 4 W Avg., f = 2700 MHz,
WiMAX, OFDM 802.16d, 64 QAM 3/4, 4 Bursts, 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. ACPR
measured in 1 MHz Channel Bandwidth @ 8.5 MHz Offset.
Power Gain
Gps
25.5
28.5
30.5
dB
Power Added Efficiency
PAE
15
17
—
%
Output Peak--to--Average Ratio @ 0.01% Probability on CCDF
PAR
—
9
—
dB
ACPR
—
--50
--46
dBc
IRL
—
--15
--10
dB
Adjacent Channel Power Ratio
Input Return Loss
Typical Performances OFDM Signal -- 10 MHz Channel Bandwidth (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc,
IDQ1 = 77 mA, IDQ2 = 275 mA, Pout = 4 W Avg., f = 2700 MHz, WiMAX, OFDM 802.16d, 64 QAM 3/4, 4 Bursts, 10 MHz Channel Bandwidth,
Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF.
Relative Constellation Error (2)
Error Vector Magnitude
(2)
1. Part internally matched both on input and output.
2. RCE = 20Log(EVM/100)
RCE
—
--33
—
dB
EVM
—
2.2
—
% rms
(continued)
MMRF2004NBR1
RF Device Data
Freescale Semiconductor, Inc.
3
Table 5. Electrical Characteristics (TA = 25C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 77 mA, IDQ2 = 275 mA, 2500--2700 MHz Bandwidth
Pout @ 1 dB Compression Point, CW
P1dB
—
25
—
—
50
—
W
IMD Symmetry @ 27 W PEP, Pout where IMD Third Order
Intermodulation  30 dBc
(Delta IMD Third Order Intermodulation between Upper and Lower
Sidebands > 2 dB)
IMDsym
VBW Resonance Point
(IMD Third Order Intermodulation Inflection Point)
VBWres
—
90
—
MHz
Gain Flatness in 200 MHz Bandwidth @ Pout = 4 W Avg.
GF
—
0.5
—
dB
Average Deviation from Linear Phase in 200 MHz Bandwidth
@ Pout = 25 W CW

—
2.1
—

Delay
—
2.3
—
ns
Part--to--Part Insertion Phase Variation @ Pout = 25 W CW,
f = 2600 MHz, Six Sigma Window

—
22
—

Gain Variation over Temperature
(--30C to +85C)
G
—
0.036
—
dB/C
P1dB
—
0.003
—
dBm/C
Average Group Delay @ Pout = 25 W CW, f = 2600 MHz
Output Power Variation over Temperature
(--30C to +85C)
MHz
Typical Driver Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1 = 77 mA, IDQ2 = 275 mA, Pout = 26 dBm Avg.,
f = 2700 MHz, WiMAX, OFDM 802.16d, 64 QAM 3/4, 4 Bursts, 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability
on CCDF. ACPR measured in 1 MHz Channel Bandwidth @ 8.5 MHz Offset.
Power Gain
Gps
—
27.8
—
dB
Power Added Efficiency
PAE
—
3.2
—
%
Output Peak--to--Average Ratio @ 0.01% Probability on CCDF
Adjacent Channel Power Ratio
Input Return Loss
Relative Constellation Error @ Pout = 1.25 W Avg.
(1)
PAR
—
9
—
dB
ACPR
—
--56
—
dBc
IRL
—
--13
—
dB
RCE
—
--40
—
dB
1. RCE = 20Log(EVM/100)
MMRF2004NBR1
4
RF Device Data
Freescale Semiconductor, Inc.
VDD1
VD2
B1
C17
C16
C9
C15
28 V
C8
C14
C7
RF
INPUT
1
2
3
4
5
Z1
Z2
Z3
Z4
C5
C1
VG1
R5
10
11 NC
C13
NC 16
C12
NC 15
NC
NC
NC
7 NC
8
9
C6
DUT
Z13
14
6
C4
R4
NC
Z5
Z6
Z7
Z8
Z9
Z10
C10
Quiescent Current
Temperature
Compensation
Z11
Z12 Z14
RF
OUTPUT
C11
NC 13
NC 12
C2
R6
C3
VG2
R1
R2
R3
Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
0.500 x 0.027 Microstrip
0.075 x 0.127 Microstrip
1.640 x 0.027 Microstrip
0.100 x 0.042 Microstrip
0.151 x 0.268 Microstrip
0.025 x 0.268 x 0.056 Taper
0.050 x 0.056 Microstrip
0.356 x 0.056 Microstrip
Z9
Z10
Z11
Z12
Z13*
Z14
PCB
0.040 x 0.061 Microstrip
0.020 x 0.050 Microstrip
0.050 x 0.050 Microstrip
0.050 x 0.027 Microstrip
0.338 x 0.020 Microstrip
1.551 x 0.027 Microstrip
Rogers R04350B, 0.0133, r = 3.48
* Line length includes microstrip bends
Figure 3. MMRF2004NBR1 Test Circuit Schematic
Table 6. MMRF2004NBR1 Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
B1
47 , 100 MHz Short Ferrite Bead
2743019447
Fair--Rite
C1, C4, C7, C12, C15
6.8 pF Chip Capacitors
ATC600S6R8CT250XT
ATC
C2, C5, C8, C13
10 nF Chip Capacitors
C0603C103J5RAC
Kemet
C3, C6, C9, C14
1 F, 50 V Chip Capacitors
GRM32RR71H105KA01B
Murata
C10
2.4 pF Chip Capacitor
ATC600S2R4BT250XT
ATC
C11
3.3 pF Chip Capacitor
ATC600S3R3BT250XT
ATC
C16, C17
10 F, 50 V Chip Capacitors
GRM55DR61H106KA88B
Murata
R1, R4
12 K, 1/4 W Chip Resistors
CRCW12061202FKEA
Vishay
R2, R3, R5, R6
1 K, 1/4 W Chip Resistors
CRCW12061001FKEA
Vishay
MMRF2004NBR1
RF Device Data
Freescale Semiconductor, Inc.
5
B1
C16
C17
C15
C9
C8
C7
R5
C1
R6
R1
R2
R3
VG1
VG2
C2
C6
C3
CUT OUT AREA
R4
C12
C13
C4
C5
C14
C10
C11
Figure 4. MMRF2004NBR1 Test Circuit Component Layout
MMRF2004NBR1
6
RF Device Data
Freescale Semiconductor, Inc.
Gps
16
28
15
V = 28 Vdc, Pout = 4 W (Avg.), IDQ1 = 77 mA, IDQ2 = 275 mA
27.8 DD
OFDM 802.16d, 64 QAM 3/4, 4 Bursts, 10 MHz Channel
27.6 Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability
on CCDF
27.4
14
27.2 ACPR
27
26.8
--16
--54
--18
--55
--56
PARC
--57
IRL
26.6
2500
--53
2525
2550
2575
2600
2625
2650
2675
--58
2700
--20
--22
--24
--26
--0.2
--0.4
--0.6
--0.8
--1
PARC (dB)
Gps, POWER GAIN (dB)
17
IRL, INPUT RETURN LOSS (dB)
28.4
28.2
18
PAE
ACPR (dBc)
28.6
PAE, POWER ADDED
EFFICIENCY (%)
TYPICAL CHARACTERISTICS
--1.2
f, FREQUENCY (MHz)
PAE
Gps
3
2.5
28
VDD = 28 Vdc, Pout = 26 dBm (Avg.), IDQ1 = 77 mA, IDQ2 = 275 mA
27.8 OFDM 802.16d, 64 QAM 3/ , 4 Bursts, 10 MHz Channel Bandwidth
4
27.6 Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF
2
--56
--10
27.4
--57
--15
27.2
27
1.5
PARC
--58
ACPR
--59
26.8
--60
IRL
26.6
2500
2525
2550
2575
2600
2625
2650
2675
ACPR (dBc)
Gps, POWER GAIN (dB)
28.2
--61
2700
--20
--25
--30
--35
--0.2
--0.4
--0.6
--0.8
--1
PARC (dB)
3.5
28.4
IRL, INPUT RETURN LOSS (dB)
28.6
PAE, POWER ADDED
EFFICIENCY (%)
Figure 5. WiMAX Broadband Performance @ Pout = 4 Watts Avg.
--1.2
f, FREQUENCY (MHz)
Figure 6. WiMAX Broadband Performance @ Pout = 26 dBm Avg.
29
344 mA
28
275 mA
27
30
IDQ2 = 412 mA
206 mA
26
25
137 mA
VDD = 28 Vdc
IDQ1 = 77 mA
f = 2600 MHz
24
IDQ1 = 103 mA
29
Gps, POWER GAIN (dB)
Gps, POWER GAIN (dB)
30
96 mA
28
77 mA
27
58 mA
26
25
39 mA
VDD = 28 Vdc
IDQ2 = 275 mA
f = 2600 MHz
24
23
23
0.1
1
10
100
0.1
1
10
100
Pout, OUTPUT POWER (WATTS) CW
Pout, OUTPUT POWER (WATTS) CW
Figure 7. Power Gain versus Output Power
@ IDQ1 = 77 mA
Figure 8. Power Gain versus Output Power
@ IDQ2 = 275 mA
MMRF2004NBR1
RF Device Data
Freescale Semiconductor, Inc.
7
IMD, INTERMODULATION DISTORTION (dBc)
TYPICAL CHARACTERISTICS
0
VDD = 28 Vdc, Pout = 27 W (PEP), IDQ1 = 77 mA
IDQ2 = 275 mA, Two--Tone Measurements
(f1 + f2)/2 = Center Frequency of 2600 MHz
--10
--20
IM3--U
--30
IM3--L
--40
IM5--L
IM5--U
--50
IM7--L
IM7--U
--60
10
1
100
TWO--TONE SPACING (MHz)
28.5
0
28
27.5
27
26.5
26
30
ACPR
--1
Gps
--1 dB = 4.01 W
--2
--5
25
20
15
--3
--4
--2 dB = 6.21 W
1
10
PARC
--3 dB = 8.59 W
--30
35
VDD = 28 Vdc, IDQ1 = 77 mA, IDQ2 = 275 mA f = 2600 MHz, OFDM
802.16d, 64 QAM 3/4, 4 Bursts, 10 MHz Channel
Bandwidth, Input Signal PAR = 9.5 dB @ 0.01%
PAE
Probability on CCDF
--35
--40
--45
--50
--55
--60
5
3
6
9
12
ACPR (dBc)
1
PAE, POWER ADDED EFICIENCY (%)
29
OUTPUT COMPRESSION AT 0.01%
PROBABILITY ON CCDF (dB)
Gps, POWER GAIN (dB)
Figure 9. Intermodulation Distortion Products
versus Tone Spacing
15
Pout, OUTPUT POWER (WATTS)
Figure 10. Output Peak--to--Average Ratio
Compression (PARC) versus Output Power
VDD = 28 Vdc, IDQ1 = 77 mA, IDQ2 = 275 mA
f = 2600 MHz, OFDM 802.16d, 64 QAM 3/4, 4 Bursts
10 MHz Channel Bandwidth, Input Signal
PAR = 9.5 dB @ 0.01% Probability on CCDF
40
35
TC = --40_C 25_C
20
--25
85_C
--40
Gps
15
--45
PAE
10
--50
ACPR
5
0
--20
--30
25_C
--40_C --35
30
25
--15
--40_C
25_C
85_C
85_C
1
ACPR (dBc)
PAE, POWER ADDED EFFICIENCY (%),
Gps, POWER GAIN (dB)
45
--55
10
50
--60
Pout, OUTPUT POWER (WATTS) AVG. WiMAX
Figure 11. WiMAX, ACPR, Power Gain and
Power Added Efficiency versus Output Power
MMRF2004NBR1
8
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS
25
0
--10
13
--20
--30
7
S11 (dB)
S21 (dB)
S21
19
S11
--40
1
--5
1800
VDD = 28 Vdc
IDQ1 = 77 mA, IDQ2 = 275 mA
2000
2200
2400
2600
2800
3000
3200
--50
3400
f, FREQUENCY (MHz)
Figure 12. Broadband Frequency Response
MMRF2004NBR1
RF Device Data
Freescale Semiconductor, Inc.
9
WIMAX TEST SIGNAL
100
--10
10
--20
--30
1
--40
0.1
(dB)
PROBABILITY (%)
Input Signal
0.01
OFDM 802.16d, 64 QAM 3/4, 4 Bursts
10 MHz Channel Bandwidth, Input Signal
PAR = 9.5 dB @ 0.01% Probability
on CCDF
0.001
0.0001
10 MHz
Channel BW
2
0
4
6
--50
--60
--70
8
PEAK--TO--AVERAGE (dB)
Figure 13. OFDM 802.16d Test Signal
10
--80
--90
--20
ACPR in 1 MHz
Integrated BW
--15
--10
ACPR in 1 MHz
Integrated BW
--5
0
5
10
15
20
f, FREQUENCY (MHz)
Figure 14. WiMAX Spectrum Mask Specifications
MMRF2004NBR1
10
RF Device Data
Freescale Semiconductor, Inc.
Zo = 50 
f = 2700 MHz
f = 2700 MHz
Zload
Zsource
f = 2500 MHz
f = 2500 MHz
VDD = 28 Vdc, IDQ1 = 77 mA, IDQ2 = 275 mA, Pout = 4 W Avg.
f
MHz
Zsource

Zload

2500
36.381 -- j4.271
5.717 -- j3.618
2525
36.041 -- j3.328
5.624 -- j3.187
2550
35.753 -- j2.363
5.578 -- j2.770
2575
35.516 -- j1.380
5.589 -- j2.412
2600
35.333 -- j0.381
5.586 -- j2.088
2625
35.203 + j0.635
5.579 -- j1.807
2650
35.126 + j1.664
5.552 -- j1.559
2675
35.104 + j2.707
5.564 -- j1.335
2700
35.138 + j3.760
5.568 -- j1.164
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured from
drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 15. Series Equivalent Source and Load Impedance
MMRF2004NBR1
RF Device Data
Freescale Semiconductor, Inc.
11
Table 7. Common Source S--Parameters (VDD = 28 V, IDQ1 = 77 mA, IDQ2 = 275 mA, TA = 25C, 50 Ohm System)
S11
S21
S12
S22
f
MHz
|S11|

|S21|

|S12|

|S22|

1500
0.735
61.0
0.001
--167.6
0.000501
26.6
0.992
167.9
1550
0.729
53.3
0.004
--146.0
0.000361
34.7
0.993
166.3
1600
0.715
46.5
0.014
--146.4
0.000114
109.5
0.991
164.6
1650
0.695
39.8
0.039
--152.5
0.000385
148.4
0.992
162.7
1700
0.665
32.9
0.110
--166.8
0.000773
155.6
0.989
160.5
1750
0.619
25.0
0.299
169.4
0.00134
153.2
0.979
157.8
1800
0.549
15.1
0.708
134.4
0.00198
143.0
0.944
155.2
1850
0.452
2.6
1.335
96.3
0.00250
131.2
0.903
153.9
1900
0.332
--14.4
2.195
62.1
0.00290
121.7
0.879
153.0
1950
0.199
--40.1
3.445
32.7
0.00320
113.8
0.847
151.0
2000
0.089
--91.9
5.724
4.8
0.00345
108.5
0.817
147.7
2050
0.078
167.4
10.041
--26.2
0.00382
107.0
0.749
140.6
2100
0.116
90.3
19.072
--65.1
0.00525
105.3
0.571
125.2
2150
0.170
--13.2
32.642
--126.0
0.00781
77.9
0.054
160.2
2200
0.192
--93.2
31.339
171.3
0.00640
41.0
0.555
--144.4
2250
0.177
--123.0
26.174
130.3
0.00432
24.9
0.726
--160.3
2300
0.163
--132.6
23.605
98.7
0.00294
22.3
0.770
--167.1
2350
0.153
--140.5
22.427
70.0
0.00224
31.0
0.789
--170.1
2400
0.119
--153.6
21.922
41.7
0.00208
42.5
0.800
--171.0
2450
0.059
--165.3
21.172
14.2
0.00216
48.9
0.820
--171.2
2500
0.014
--50.7
20.172
--12.5
0.00227
48.9
0.850
--171.3
2550
0.055
--55.0
19.222
--39.5
0.00213
51.4
0.889
--171.7
2600
0.056
--84.7
17.366
--66.8
0.00209
57.8
0.933
--173.2
2650
0.029
177.4
14.562
--91.5
0.00247
65.6
0.961
--175.8
2700
0.069
103.3
12.199
--111.7
0.00286
62.2
0.968
--178.0
2750
0.122
84.1
10.485
--130.4
0.00308
56.3
0.969
--179.5
2800
0.287
59.8
8.086
--154.4
0.00326
50.9
0.969
179.3
2850
0.184
--5.4
7.102
--152.5
0.00292
39.2
0.966
178.6
2900
0.129
--17.4
6.753
--169.3
0.00256
38.6
0.969
178.0
2950
0.128
--41.0
6.107
175.4
0.00232
38.5
0.970
177.4
3000
0.164
--65.7
5.445
160.8
0.00213
39.9
0.972
176.9
3050
0.223
--86.2
4.867
146.7
0.00196
42.0
0.972
176.4
3100
0.297
--100.4
4.363
133.2
0.00183
46.0
0.973
176.0
3150
0.374
--110.4
3.918
120.0
0.00176
51.4
0.974
175.5
3200
0.447
--118.0
3.534
107.2
0.00181
56.5
0.974
174.9
3250
0.515
--123.4
3.198
95.3
0.00191
60.9
0.975
174.3
3300
0.563
--128.0
2.951
83.3
0.00211
58.8
0.975
173.7
3350
0.619
--131.8
2.761
71.2
0.00206
63.0
0.976
173.0
3400
0.651
--136.0
2.581
58.8
0.00218
64.8
0.975
172.3
3450
0.671
--140.1
2.418
46.0
0.00237
68.3
0.975
171.6
(continued)
MMRF2004NBR1
12
RF Device Data
Freescale Semiconductor, Inc.
Table 7. Common Source S--Parameters (VDD = 28 V, IDQ1 = 77 mA, IDQ2 = 275 mA, TA = 25C, 50 Ohm System) (continued)
S11
S21
S12
S22
f
MHz
|S11|

|S21|

|S12|

|S22|

3500
0.679
--144.4
2.257
32.6
0.00265
68.5
0.974
171.0
3550
0.677
--147.9
2.054
19.2
0.00280
65.0
0.976
170.5
3600
0.661
--153.5
1.851
5.0
0.00281
67.1
0.976
170.0
3650
0.696
--153.8
1.644
--5.8
0.00328
69.3
0.976
169.6
3700
0.721
--161.3
1.453
--19.4
0.00350
65.8
0.977
169.4
3750
0.737
--168.1
1.243
--32.1
0.00357
64.5
0.978
169.2
3800
0.753
--174.7
1.042
--43.7
0.00374
64.5
0.979
169.2
3850
0.771
179.2
0.859
--54.3
0.00401
62.5
0.980
169.2
3900
0.788
174.4
0.708
--62.8
0.00407
58.4
0.980
169.3
3950
0.812
169.8
0.583
--71.5
0.00416
57.7
0.981
169.3
4000
0.829
166.0
0.477
--79.0
0.00427
55.8
0.982
169.3
MMRF2004NBR1
RF Device Data
Freescale Semiconductor, Inc.
13
ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS
P3dB = 45.73 dBm (36 W)
Pout, OUTPUT POWER (dBm)
48
P1dB = 44.61 dBm (29 W)
46
44
Actual
42
40
38
VDD = 28 Vdc, IDQ1 = 77 mA, IDQ2 = 275 mA
Pulsed CW, 10 sec(on), 10% Duty Cycle,
f = 2500 MHz
36
34
3 4
5
6
7
8
50
Ideal
9 10 11 12 13 14 15 16 17 18 19
P3dB = 44.46 dBm (35 W)
48
Pout, OUTPUT POWER (dBm)
50
46
Ideal
P1dB = 45.42 dBm (28 W)
Actual
44
42
40
38
36
VDD = 28 Vdc, IDQ1 = 77 mA, IDQ2 = 275 mA
Pulsed CW, 10 sec(on), 10% Duty Cycle,
f = 2700 MHz
34
32
2 3 4 5 6
Pin, INPUT POWER (dBm)
7 8
9 10 11 12 13 14 15 16 17 18 19 20
Pin, INPUT POWER (dBm)
NOTE: Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 V
NOTE: Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 V
Test Impedances per Compression Level
Test Impedances per Compression Level
P1dB
Zsource

Zload

42.7 + j11.6
4.86 -- j1.63
Figure 16. Pulsed CW Output Power
versus Input Power @ 28 V @ 2500 MHz
P1dB
Zsource

Zload

39.5 -- j8.7
3.53 -- j1.66
Figure 17. Pulsed CW Output Power
versus Input Power @ 28 V @ 2700 MHz
MMRF2004NBR1
14
RF Device Data
Freescale Semiconductor, Inc.
PACKAGE DIMENSIONS
MMRF2004NBR1
RF Device Data
Freescale Semiconductor, Inc.
15
MMRF2004NBR1
16
RF Device Data
Freescale Semiconductor, Inc.
MMRF2004NBR1
RF Device Data
Freescale Semiconductor, Inc.
17
PRODUCT DOCUMENTATION
Refer to the following documents to aid your design process.
Application Notes
 AN1955: Thermal Measurement Methodology of RF Power Amplifiers
 AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family
 AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family
 AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over--Molded Plastic Packages
Engineering Bulletins
 EB212: Using Data Sheet Impedances for RF LDMOS Devices
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
Dec. 2013
Description
 Initial Release of Data Sheet
MMRF2004NBR1
18
RF Device Data
Freescale Semiconductor, Inc.
How to Reach Us:
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Home Page:
freescale.com
Web Support:
freescale.com/support
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their
respective owners.
E 2013 Freescale Semiconductor, Inc.
MMRF2004NBR1
Document
Number:Data
MMRF2004NB
RF Device
Rev. 0,
12/2013
Freescale
Semiconductor,
Inc.
19