Si7862DP Vishay Siliconix N-Channel 16-V (D-S) MOSFET FEATURES D D D D PRODUCT SUMMARY VDS (V) 16 rDS(on) (W) ID (A) 0.0033 @ VGS = 4.5 V 29 0.0055 @ VGS = 2.5 V 23 TrenchFETr Power MOSFETS: 2.5-V Rated Low 3.3-mW rDS(on) Low Gate Resistance 100% Rg Tested APPLICATIONS D Synchronous Rectification D Low Output Voltage Synchronous Rectification PowerPAKr SO-8 D S 6.15 mm 5.15 mm 1 S 2 S 3 G 4 G D 8 D 7 D 6 D S 5 N-Channel MOSFET Bottom View Ordering Information: Si7862DP-T1 ABSOLUTE MAXIMUM RATINGS (TA = 25_C UNLESS OTHERWISE NOTED) Parameter Symbol 10 secs Steady State Drain-Source Voltage VDS 16 Gate-Source Voltage VGS "8 Continuous Drain Current (TJ = 150_C)a TA = 25_C TA = 70_C Pulsed Drain Current (10 ms Pulse Width) IS TA = 25_C Maximum Power Dissipationa TA = 70_C Operating Junction and Storage Temperature Range PD 18 23 IDM Continuous Source Current (Diode Conduction)a V 29 ID 14 A 60 4.5 1.6 5.4 1.9 3.4 1.2 TJ, Tstg Unit W _C -55 to 150 THERMAL RESISTANCE RATINGS Parameter Symbol t v 10 sec M i Maximum JJunction-to-Ambient ti t A bi ta Maximum Junction-to-Case (Drain) Steady State Steady State RthJA RthJC Typical Maximum 18 23 50 65 1.0 1.5 Unit _C/W C/W Notes a. Surface Mounted on 1” x 1” FR4 Board. Document Number: 71792 S-31727—Rev. B. 18-Aug-03 www.vishay.com 1 Si7862DP Vishay Siliconix SPECIFICATIONS (TJ = 25_C UNLESS OTHERWISE NOTED) Parameter Symbol Test Condition Min VGS(th) VDS = VGS, ID = 250 mA 0.6 Typ Max Unit Static Gate Threshold Voltage Gate-Body Leakage IGSS Zero Gate Voltage Drain Current IDSS On-State Drain Currenta ID(on) Drain-Source On-State Resistancea Forward Transconductancea Diode Forward Voltagea VDS = 0 V, VGS = "8 V "100 VDS = 12.8 V, VGS = 0 V 1 VDS = 12.8 V, VGS = 0 V, TJ = 55_C 5 VDS w 5 V, VGS = 4.5 V rDS(on) V nA mA 30 A VGS = 4.5 V, ID = 29 A 0.0027 0.0033 VGS = 2.5 V, ID = 23 A 0.0045 0.0055 gfs VDS = 6 V, ID = 29 A 140 VSD IS = 4.5 A, VGS = 0 V 0.75 1.2 48 70 W S V Dynamicb Total Gate Charge Qg Gate-Source Charge Qgs Gate-Drain Charge Qgd Gate Resistance Rg Turn-On Delay Time nC 11.8 8.9 1.3 2.1 td(on) 42 60 tr 38 60 120 180 50 75 80 120 Rise Time Turn-Off Delay Time VDS = 6 V, VGS = 4.5 V, ID = 29 A 0.5 VDD = 6 V, RL = 6 W ID ^ 1 A, VGEN = 4.5 V, RG = 6 W td(off) Fall Time tf Source-Drain Reverse Recovery Time trr IF = 2.9 A, di/dt = 100 A/ms W ns Notes a. Pulse test; pulse width v 300 ms, duty cycle v 2%. b. Guaranteed by design, not subject to production testing. TYPICAL CHARACTERISTICS (25_C UNLESS NOTED) Output Characteristics Transfer Characteristics 60 60 VGS = 5 thru 2.5 V 50 I D - Drain Current (A) I D - Drain Current (A) 50 40 30 20 2V 10 40 30 TC = 125_C 20 25_C 10 -55_C 0 0 1 2 3 4 VDS - Drain-to-Source Voltage (V) www.vishay.com 2 5 0 0.0 0.5 1.0 1.5 2.0 2.5 VGS - Gate-to-Source Voltage (V) Document Number: 71792 S-31727—Rev. B. 18-Aug-03 Si7862DP Vishay Siliconix TYPICAL CHARACTERISTICS (25_C UNLESS NOTED) Capacitance 10000 0.008 8000 C - Capacitance (pF) r DS(on) - On-Resistance ( W ) On-Resistance vs. Drain Current 0.010 VGS = 2.5 V 0.006 0.004 VGS = 4.5 V 0.002 Ciss 6000 4000 Coss 2000 0.000 Crss 0 0 10 20 30 40 50 60 0 3 ID - Drain Current (A) Gate Charge 12 15 On-Resistance vs. Junction Temperature 1.6 VDS = 6 V ID = 29 A 4 r DS(on) - On-Resistance ( W) (Normalized) V GS - Gate-to-Source Voltage (V) 9 VDS - Drain-to-Source Voltage (V) 5 3 2 1 0 0 12 24 36 48 1.2 1.0 0.8 0.6 -50 60 -25 0 25 50 75 100 125 150 TJ - Junction Temperature (_C) Source-Drain Diode Forward Voltage On-Resistance vs. Gate-to-Source Voltage 0.015 r DS(on) - On-Resistance ( W ) 60 TJ = 150_C 10 TJ = 25_C 0.012 0.009 0.006 ID = 29 A 0.003 0.000 1 0.00 VGS = 4.5 V ID = 29 A 1.4 Qg - Total Gate Charge (nC) I S - Source Current (A) 6 0.2 0.4 0.6 0.8 VSD - Source-to-Drain Voltage (V) Document Number: 71792 S-31727—Rev. B. 18-Aug-03 1.0 1.2 0 2 4 6 8 VGS - Gate-to-Source Voltage (V) www.vishay.com 3 Si7862DP Vishay Siliconix TYPICAL CHARACTERISTICS (25_C UNLESS NOTED) Threshold Voltage Single Pulse Power 0.4 200 0.2 160 -0.0 Power (W) V GS(th) Variance (V) ID = 250 mA -0.2 120 80 -0.4 40 -0.6 -0.8 -50 -25 0 25 50 75 100 125 150 0 0.001 0.01 TJ - Temperature (_C) 0.1 1 10 Time (sec) Normalized Thermal Transient Impedance, Junction-to-Ambient 2 Normalized Effective Transient Thermal Impedance 1 Duty Cycle = 0.5 0.2 Notes: 0.1 PDM 0.1 0.05 t1 t2 1. Duty Cycle, D = 0.02 t1 t2 2. Per Unit Base = RthJA = 50_C/W 3. TJM - TA = PDMZthJA(t) 4. Surface Mounted Single Pulse 0.01 10 - 4 10 - 3 10 - 2 10 - 1 1 Square Wave Pulse Duration (sec) 10 100 600 Normalized Thermal Transient Impedance, Junction-to-Case 2 Normalized Effective Transient Thermal Impedance 1 Duty Cycle = 0.5 0.2 0.1 0.1 Single Pulse 0.05 0.02 0.01 10 - 4 www.vishay.com 4 10 - 3 10 - 2 10 - 1 Square Wave Pulse Duration (sec) 1 10 Document Number: 71792 S-31727—Rev. B. 18-Aug-03 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1