RT5002 7 + 1 Channel DC/DC PMU with Li-Ion Battery Charger for DSC General Description Features The RT5002 is a complete power supply solution for digital still cameras and other handheld devices. It includes a 7+1 channel DC/DC power converter unit, a single-cell Liion battery charger, and an I2C control interface. Power Converter Unit : One Channel LV Sync Step-Up and Three Channel LV Sync Step-Down Up to 95% Efficiency One Sync Step-Up and One Async Inverting for CCD± ± bias One WLED Driver in either Sync Step-Up or Current Source Operation WLED Driver with Dimming Control Step-Up Mode with LED Open Protection (OVP7) One Low Quiescent LDO with Reverse Leakage Prevention for RTC Power Supply Preset On/Off Sequence of CH1, CH2, CH3, CH4 (1 → 3 → 4 → 2) Two Preset On/Off Sequence of CH5, CH6 (5 → 6 or 6 → 5) All Power Switches Integrated with Internal Compensation All Step-Up Converters with Load Disconnect Wake Up Impulse to Monitor BAT and VIN Plug-In Charger Unit : 28V Maximum Rating for VIN Power Selectable Power Current Limit (0.1A / 0.5A / 1.5A) Auto Power Path Management (APPM) and Integrated Power MOSFETs Battery Charging Current Control Battery Regulation Voltage Control Programmable Charging Current and Safe Charge Timer Under Voltage and Over Voltage Protection Optimized Charge Rate via Thermal Feedback Interrupt Indicator to Fault/Status Events I2C Control Interface : Support Fast Mode up to 400kb/s Voltage Divider for Sensing Battery Voltage Level Small 40-Lead WQFN Package RoHS Compliant and Halogen Free The power converter unit includes one synchronous stepup converter and three synchronous step-down converters for DSP core, I/O, Motor, and memory power supply, one synchronous high voltage step-up converter and one asynchronous inverting converter for CCD± bias, one WLED driver in either synchronous high voltage step-up or current source operation, and one low quiescent LDO for RTC application. All converters are internally frequency compensated and integrate power MOSFETs. The power converter unit provides complete protection functions: over current, thermal shutdown, over voltage, over-load, and under voltage protection. The battery charger includes Auto Power Path Management (APPM). No external MOSFETs are required. The charger enters sleep mode when power is removed. Charging tasks are optimized by using a control algorithm to vary the charge rate, including pre-charge mode, fast charge mode and constant voltage mode. The charge current can also be programmed with an external resistor and modified via the I2C control interface. The scope that the battery regulation voltage can be modified via the I2C interface depends on the battery temperature. The internal thermal feedback circuitry regulates the die temperature to optimize the charge rate for all ambient temperatures. The charging task will always be terminated in constant voltage mode when the charging current reduces to the termination current of 10% x ICHG_FAST. The charger includes under voltage and over-voltage protection for the supply input voltage, VIN. Applications DSC DS5002-00 November 2011 www.richtek.com 1 RT5002 Ordering Information Pin Configurations (TOP VIEW) Package Type QW : WQFN-40L 5x5 (W-Type) Lead Plating System Z : ECO (Ecological Element with Halogen Free and Pb free) Note : Richtek products are : RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020. Suitable for use in SnPb or Pb-free soldering processes. LX1 PVD1 RTCPWR VIN SYS SYS BAT BAT PVD2 LX2 RT5002 40 39 38 37 36 35 34 33 32 31 INT FB1 VDDM FB7 PVD7 LX7 BATS LX4 PVD4 FB4 1 30 2 29 3 28 27 4 5 26 GND 6 25 7 24 8 41 23 22 9 21 10 WAKE FB2 TSSEL LX5 PVD5 FB5 EN1234 LX3 PVD3 FB3 Marking Information RT5002ZQW : Product Number RT5002 ZQW YMDNN www.richtek.com 2 YMDNN : Date Code ISETA TS VP SDA SCL PVD6 LX6 VOUT6 FB6 VREF 11 12 13 14 15 16 17 18 19 20 WQFN-40L 5x5 DS5002-00 November 2011 RT5002 Typical Application Circuit For 4-LED Application L5 10µH SYS CCD 15V 27 C14 4.7µF R9 287k L1 2.2µH PVD5 PVD1 39 C1 10µF x 2 C13 10µF x 2 16 SYS C15 10µF L6 10µH FB5 PVD2 32 PVD6 LX2 17 LX6 FB2 C3 10µF L2 31 2.2µH C4 10µF 29 18 C17 1nF PVD3 19 C18 0.1µF R12 10k 20 5 C19 1µF D2 D3 SYS L7 10µH 6 C20 1µF D4 VOUT6 R11 63.4k D5 4 R13 10 TSSEL = VIN for 10k NTC ADAPTER /USB 28 C21 2.2µF RISETA FB3 R16 LX7 PVD4 9 FB4 RTCPWR 11 ISETA BATS DS5002-00 November 2011 L4 2.2µH R7 232k 10 C7 33pF 1.8V C6 10µF SYS C11 47pF VCORE C10 1V 10µF R8 931k C9 10µF 38 SYS RTCPWR VDDM 3 Bypass Cap 1µF 2 VDD_I C R14 1k VP SCL 15 1 INT SDA 14 30 WAKE CBATS 0.1µF C8 10µF TS Interrupt Flag Wake Up Signal to µP SYS Super Cap 13 C23 0.1µF R5 470k FB7 BAT R3 470k R6 374k LX4 8 TSSEL VI/O 3.3V DDRII 21 R17 VI/O 3.3V L3 2.2µH SYS 35, 36 12 R18 10k C5 10µF PVD7 RNTC ~10k LX3 23 VREF C22 1µF + 22 37 VIN 33, 34 BAT FB6 SYS R4 150k D1 Back Light Motor 5V R2 88.7k 25 C16 10µF x 2 C24 4.7pF R1 470k FB1 2 R10 26.1k CCD -7V SYS C2 10µF RT5002 26 C12 27pF LX1 40 LX5 7 BATS EN1234 GND 24 R15 1k EN1234 Control Chip Enable CH1 CH3 CH4 5V 1.8V 1V CH2 3.3V 41 (Exposed Pad) www.richtek.com 3 RT5002 For 1-LED Application L5 10µH SYS CCD 15V 27 C14 4.7µF R9 287k LX5 L1 2.2µH PVD5 C13 10µF x 2 PVD1 39 C1 10µF x 2 16 SYS FB5 LX2 17 D1 C17 1nF 18 LX6 R12 10k 20 5 C19 1µF 6 FB6 VREF R13 TSSEL = GND 10 for 100k NTC ADAPTER /USB 28 C21 2.2µF RISETA RNTC ~100k LX3 23 FB3 LX4 8 TSSEL R5 470k C8 10µF L4 2.2µH FB4 R7 232k 10 SYS 35, 36 BAT SYS C7 33pF C6 10µF DDRII 1.8V SYS C11 47pF C10 10µF VCORE 1V R8 931k C9 10µF 11 ISETA 12 R18 10k www.richtek.com 4 R3 470k 38 SYS RTCPWR Super Cap 13 BATS L3 2.2µH FB7 RTCPWR R16 C23 Interrupt Flag 0.1µF Wake Up Signal to µP VI/O 3.3V R6 374k VDDM 3 2 VDD_I C R14 1k VP SCL 15 1 INT SDA 14 30 WAKE CBATS 0.1µF Bypass Cap 1µF TS R17 VI/O 3.3V C5 10µF 21 LX7 C22 1µF + 22 PVD4 9 37 VIN 33, 34 BAT 29 PVD7 Back Light 4 C4 10µF VOUT6 PVD3 19 5V FB2 5V C3 10µF L2 31 2.2µH R4 150k R11 63.4k C18 0.1µF PVD2 32 PVD6 C15 10µF L6 10µH D6 Motor 5V R2 88.7k 25 C16 10µF x 2 C24 4.7pF R1 470k FB1 2 R10 26.1k CCD -7V SYS C2 10µF RT5002 26 C12 27pF LX1 40 EN1234 7 BATS GND 24 R15 1k EN1234 Control Chip Enable CH1 CH3 CH4 5V 1.8V 1V CH2 3.3V 41 (Exposed Pad) DS5002-00 November 2011 RT5002 Functional Pin Description Pin No. Pin Name Pin Function Interrupt Indicator Open Drain Output. If any toggle events of TS_FAULT, PGOOD, 2 1 INT EOC, or SAFE happen, the output INT goes low. After I C register bank address 0x2 is read or power on reset, INT goes high. 2 FB1 Feedback Input of CH1. 3 VDDM 4 FB7 5 PVD7 IC Analog Power Pin. Feedback Input of CH7 in Step-Up Mode or Current Sink Pin of CH7 in Current Source Mode. Power Output of CH7 6 LX7 7 BATS 8 LX4 Switch Node of CH7 in Step-Up Mode. Output pin of voltage divider for battery voltage level sensing enabled after CH2 soft-start end. BATS voltage is about 60% of BAT. Switch Node of CH4. 9 PVD4 Power Input of CH4. 10 FB4 Feedback Input of CH4. 11 ISETA 12 TS 13 VP Charge Current Set Input. Connect a resistor (R ISETA) between ISETA and GND. Temperature Sense Input. The TS pin connects to a battery’s thermistor to determine whether the battery is too hot or too cold to be charged. If the battery’s temperature is out of range, charging is paused until it re-enters the valid range. TS also detects whether the battery (with NTC) is present or not. Power Output of 3.3V Buffer for Battery Temperature Sensing. 14 SDA Data Signal Pin of I C Interface. 15 SCL Clock Signal Pin of I C Interface. 16 PVD6 Power Input of CH6. 17 LX6 Switch Node of CH6. 18 VOUT6 Sense Input of CH6 Inverting Output Node. 19 FB6 Feedback Input of CH6. 20 VREF 1.8V Reference Output. 21 FB3 Feedback Input of CH3. 22 23 PVD3 LX3 Power Input of CH3. Switch Node of CH3. 24 EN1234 Enable Pin of CH1, CH2, CH3, and CH4. 25 26 FB5 PVD5 Feedback Input of CH5. Power Output of CH5. 27 LX5 28 TSSEL Switch Node of CH5. Input Pin to Select Temperature Sensing Thresholds. Thresholds of TSSEL = H are 60% and 38% of VP voltage. Thresholds of TSSEL = L are 74% and 28% of VP voltage. 29 FB2 Feedback Input of CH2. 30 WAKE Wake-Up Impulse Push-Pull Output. If VIN or BAT plug in, WAKE pin generates one 55ms width high pulse to notify micro processor. 31 LX2 Switch Node of CH2. 32 PVD2 Power Input of CH2. 2 2 To be continued DS5002-00 November 2011 www.richtek.com 5 RT5002 Pin No. Pin Name Pin Function 33, 34 BAT 35, 36 SYS 37 VIN Battery Charge Current Output. System Connect Pin. Connect this pin to system with a minimum 10μF ceramic capacitor to GND. Supply Voltage Input. 38 RTCPWR RTC Power Output. 39 PVD1 Power Output of CH1. 40 LX1 Switch Node of CH1. 41 GND (Exposed Pad) www.richtek.com 6 Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum thermal dissipation. DS5002-00 November 2011 RT5002 Function Block Diagram VDDM EN1234 SCL SDA SYS Power On/Off Sequence Control UVLO SS 2 I C Interface Register File VDDI PVD1 VDDM UVLO PVD5 VDDM Body Diode Control SYS Body Diode Control CH1 C-Mode Step-Up LX1 CH5 C-Mode Step-Up LX5 + FB5 1.25V REF FB1 PVD2 VDDM PVD6 CH2 C-Mode Step-Down CH6 Async Inverting LX6 VOUT6 FB6 0.6V REF LX2 + EN56 + FB2 0.8V REF VDDM PVD7 VDDM SYS Body Diode Control PVD3 CH7 Step-Up or Current Source + 31 Level Dimming CH3 C-Mode Step-Down + - LX7 EN7 + VREF MOD7 ENCH VIN USUS SYS VSET Li+ Battery Charger with APPM PVD4 EN7_DIM7 TSSEL TS FB3 0.8V REF VDDM 1.8V REF BAT LX3 - FB7 VREF 0.8V REF VDDM EN56 + SYS CH4 C-Mode Step-Down LX4 ISETL - ISETU + ISET VP ISETA TIMER BATS SAFE VDDI RTC_LDO w / Body Diode Control FB4 0.8V REF GND RTCPWR EOC INT Interrupt Handler TS_FAULT VIN PGOOD BAT Power Plug-In Wake Up Detector WAKE SAFE DS5002-00 November 2011 www.richtek.com 7 RT5002 Charger Function Block Diagram VIN SYS Thermal Circuit BAT Control Circuit ssend2 ISETA ISET VSET ISETL BATS Sleep Mode CC/CV/TR /DPPM Multi Loop Controller Current Set block INT USUS OVP UVLO ENCH Logic PGOOD TS_FAULT EOC SAFE 2 I C Bank ISETU JEITA 2 I C Bank TS VP TSSEL www.richtek.com 8 NoBAT 2 I C Bank Timer 2 I C Bank GND DS5002-00 November 2011 RT5002 Absolute Maximum Ratings (Note 1) Battery Input Voltage, BAT --------------------------------------------------------------------------- −0.3V to 6V Supply Voltage, VDDM -------------------------------------------------------------------------------- −0.3V to 6V Supply Input Voltage, VIN ---------------------------------------------------------------------------- −0.3V to 28V BATS, INT ------------------------------------------------------------------------------------------------ −0.3V to 28V Other Pins ------------------------------------------------------------------------------------------------ −0.3V to 6V Power Switch (DC) : VOUT6 ---------------------------------------------------------------------------------------------------- −10V to 0.3V LX1, LX2, LX3, LX4 ------------------------------------------------------------------------------------- −0.3V to 6V PVD5, LX5 ------------------------------------------------------------------------------------------------ −0.3V to 24V PVD7, LX7 ------------------------------------------------------------------------------------------------ −0.3V to 17V LX6 --------------------------------------------------------------------------------------------------------- (PVD6 − 16V) to (PVD6 + 0.3V) INT Continuous Current ------------------------------------------------------------------------------- 20mA BAT Continuous Current (total in two pins) (Note 2) ----------------------------------------- 2.5A Power Dissipation, PD @ TA = 25°C WQFN-40L 5x5 ----------------------------------------------------------------------------------------- 2.778W Package Thermal Resistance (Note 3) WQFN-40L 5x5, θJA ------------------------------------------------------------------------------------ 36°C/W WQFN-40L 5x5, θJC ----------------------------------------------------------------------------------- 7°C/W Junction Temperature ---------------------------------------------------------------------------------- 150°C Lead Temperature (Soldering, 10 sec.) ------------------------------------------------------------ 260°C Storage Temperature Range ------------------------------------------------------------------------- −65°C to 125°C ESD Susceptibility (Note 4) HBM (Human Body Mode) --------------------------------------------------------------------------- 2kV MM (Machine Mode) ----------------------------------------------------------------------------------- 200V Recommended Operating Conditions (Note 5) Supply Voltage, VDDM -------------------------------------------------------------------------------- 2.7V to 5.5V Supply Input Voltage, VIN (ISETL = 1) ------------------------------------------------------------ 4.4V to 6V Supply Input Voltage, VIN (ISETL = 0) ------------------------------------------------------------ 4.5V to 6V Junction Temperature Range ------------------------------------------------------------------------- −40°C to 125°C Ambient Temperature Range ------------------------------------------------------------------------- −40°C to 85°C Electrical Characteristics Power Converter Unit : (VDDM = 4.2V, TA = 25°C, unless otherwise specified) Parameter Symbol Test Conditions Min Typ Max Unit 1.5 -- -- V SYS UVLO (Hysteresis Low) -- 1.3 -- V SYS UVLO Hysteresis (Gap) -- 0.2 -- V Supply Voltage SYS Startup Voltage for PMU VST To be continued DS5002-00 November 2011 www.richtek.com 9 RT5002 Parameter Symbol Test Conditions Min Typ Max Unit 5.82 6.0 6.18 V -- −0.25 -- V VDDM UVLO (Hysteresis High) 2.2 2.4 2.6 V VDDM UVLO Hysteresis (Gap) -- 0.3 -- V VDDM Over Voltage Protection (OVP) (Hysteresis High) VDDM OVP Hysteresis (Gap) Supply Current IOFF All Channels are Off, VEN1234 = 0V, VBAT = 4.2V -- 10 20 μA IQ1 No Switching, VEN1234 = 3.3V -- -- 800 μA IQ2 No Switching, VEN1234 = 3.3V -- -- 800 μA IQ3 No Switching, VEN1234 = 3.3V -- -- 800 μA IQ4 No Switching, VEN1234 = 3.3V -- -- 800 μA IQ5 Non Switching, EN56 = 1 -- -- 800 μA IQ6 No Switching, EN56 = 1 -- -- 800 μA -- -- 800 μA -- -- 800 μA 1800 2000 2200 kHz CH7 in Step-Up Mode 900 1000 1100 kHz CH1 Maximum Duty Cycle (Step-Up) CH2 Maximum Duty Cycle (Step-Down) CH3 Maximum Duty Cycle (Step-Down) CH4 Maximum Duty Cycle (Step-Down) CH5 Maximum Duty Cycle (Step-Up) VFB1 = 0.75V 80 83 86 % VFB2 = 0.75V -- -- 100 % VFB3 = 0.75V -- -- 100 % VFB4 = 0.75V -- -- 100 % VFB5 = 1.15V 91 93 97 % CH6 Maximum Duty Cycle (Inverting) VFB6 = 0.7V 91 93 97 % CH7 Maximum Duty Cycle (Step-Up) VFB7 = 0.15V 91 93 97 % 0.788 0.8 0.812 V 1.237 1.25 1.263 V 0.58 0.6 0.62 V 0.237 0.25 0.263 V Shutdown Supply Current CH1 (Sync-Step-Up) Supply Current into VDDM CH2 (Syn-Step-Down) Supply Current into VDDM CH3 (Syn-Step-Down) Supply Current into VDDM CH4 (Syn-Step-Down) Supply Current into VDDM CH5 (Syn-Step-Up) Supply Current into VDDM CH6 (Inverting) Supply Current into VDDM CH7 (WLED) in Step-Up Mode Supply Current into VDDM CH7 (WLED) in Current Source mode Supply Current into VDDM Oscillator IQ7b IQ7c CH1, 2, 3, 4 Operation Frequency fOSC CH5, 6, 7 Operation Frequency fOSC2 No Switching, EN7_DIM7 [4:0] = 31, MOD7 = 1 EN7_DIM7 [4:0] = 31, MOD7 = 0 Feedback, Output Regulation Voltage, and Output Regulation Current Feedback Regulation Voltage @ FB1, FB2, FB3, FB4 Feedback Regulation Voltage @ FB5 Feedback Regulation Voltage @ FB6 (Inverting) Feedback Regulation Voltage @ FB7 (Step-Up mode and current source EN7_DIM7 [4:0] = 31 mode) To be continued www.richtek.com 10 DS5002-00 November 2011 RT5002 Parameter Reference VREF Output Voltage (VREF-FB6) Regulation Voltage VREF Load Regulation Symbol Test Conditions Min Typ Max Unit 1.77 1.182 -- 1.8 1.2 -- 1.83 1.218 10 V V mV P-MOSFET, VPVD1 = 3.3V N-MOSFET, VPVD1 = 3.3V --- 200 150 300 250 mΩ P-MOSFET, VPVD2 = 3.3V 2.2 -- 3 200 4 300 -1.4 150 1.8 250 2.2 --1.2 300 300 1.6 400 400 2 300 300 1.6 1.1 400 400 2 1.5 VREF 0μA < IREF < 200μA Power Switch CH1 On Resistance of MOSFET CH1 Current Limitation (Step-Up) CH2 On Resistance of MOSFET N-MOSFET, VPVD2 = 3.3V CH2 Current Limitation (Step-Down) CH3 On Resistance of MOSFET P-MOSFET, VPVD3 = 3.3V N-MOSFET, VPVD3 = 3.3V CH3 Current Limitation (Step-Down) mΩ A mΩ A CH4 Current Limitation (Step-Down) CH5 On Resistance of P-MOSFET VPVD5 = 16V --1.2 -- CH5 On Resistance of N-MOSFET CH5 Current Limitation (Step-Up) CH6 On Resistance of MOSFET VDDM = 3.3V N-MOSFET P-MOSFET, VPVD6 = 3.3V -0.9 -- 0.6 1.2 0.5 0.8 1.6 0.7 Ω A Ω CH6 Current Limitation (Inverting) CH7 On Resistance of P-MOSFET P-MOSFET VPVD7 = 10V 1 -- 1.5 2.0 2 3.0 A Ω CH7 On Resistance of N-MOSFET CH7 Current Limitation (Step-Up) VDDM = 3.3V N-MOSFET -0.6 0.9 0.8 1.1 1 Ω A 5.82 20 6.0 22 6.18 24 V V -- −13 -- V 14.2 15 16 V -- VSYS −0.8V -- V 0.35 0.4 0.45 V 0.5 0.6 0.7 V 1.1 1.2 1.3 V 0.65 0.7 0.75 V 1.05 1.1 1.15 V 0.69 0.74 0.79 V -- 100 -- ms CH4 On Resistance of MOSFET P-MOSFET, VPVD4 = 3.3V N-MOSFET, VPVD4 = 3.3V A Protection Over Voltage Protection of PVD1 Over Voltage Protection of PVD5 Over Voltage Protection of VOUT6 Over Voltage Protection of PVD7 (Step-Up mode) CH1 Step-Up Under Voltage Protection of PVD1 CH1/2/3/4 Under Voltage Protection CH5 Under Voltage Protection CH6 Under Voltage Protection CH1/2/3/4 Overload Protection CH5 Overload Protection CH6 Overload Protection Protection Fault Delay At VFBx < 0.4V after soft-start ends At VFB5 < 0.6V after soft-start ends At VFB6 > 1.2V after soft-start end At VFBx < 0.72V after fault delay (100ms) At VFB5 < 1.1V after fault delay (100ms) At VFB6 > 0.74V after fault delay (100ms) mΩ A Ω To be continued DS5002-00 November 2011 www.richtek.com 11 RT5002 Parameter Symbol Test Conditions Min Typ Max Unit 1.3 -- -- --- -1 0.4 6 μA --- 155 20 --- °C °C -3.23 60 3 3.3 130 6 3.37 200 μA V mA mV Control EN1234, TSSEL Input Logic-High Voltage Threshold Logic-Low EN1234, TSSEL Sink Current Thermal Protection Thermal Shutdown Thermal Shutdown Hysteresis RTC LDO TSD ΔTSD Standby Current VOUT (RTCPWR) Max Output Current (Current Limit) VDDM = 4.2V I OUT = 0mA, VDDM = 4.2V VDDM = 4.2V Dropout Voltage I OUT = 50mA I OUT = 10mA --- --- 1000 150 I OUT = 3mA -- -- 60 -- 55 -- V WAKE Up Detector WAKE Impulse High Duration VIN or BAT plug in, RTCPWR = 3.3V Source Current 0.5mA, VWAKE_H RTCPWR = 3.3V Sink Current −0.5mA, VWAKE_L RTCPWR = 3.3 t WAKEUP High Level WAKE Output Low Level VIN Threshold to Wake Up BAT Threshold to Wake Up BAT Threshold Hysteresis to Wake Up RTCPWR RTCPWR − 0.3 -- ms V 0 0.3 -- 3.1 -- 3.3 2.7 3.5 -- V V -- 150 -- mV Charger Unit : (VIN = 5V, VBAT = 4V, TA = 25°C, unless otherwise specified) Parameter Supply Input VIN Under Voltage Lockout Threshold VIN Under Voltage Lockout Hysteresis VIN Supply Current Symbol Test Conditions Min Typ Max Unit VUVLO VIN = 0V to 4V 3.1 3.3 3.5 V ΔVUVLO VIN = 4V to 0V -- 240 -- mV ISYS = IBAT = 0mA, ENCH = 0 (VBAT > VREGx ) -- 1 2 ISYS = IBAT = 0mA, ENCH = 1 (VBAT > VREGx ) -- 0.8 1.5 --- 195 200 300 300 μA mV 10 50 -- mV 4.3 4.4 4.5 V 4.16 4.2 4.23 V 4.01 4.05 4.08 V I SUPPLY VIN Suspend Current VIN − BAT VOS Rising I USUS VOS_H VIN − BAT VOS Falling Voltage Regulation VOS_L System Regulation Voltage VSYS Battery Regulation Voltage VREG1 Battery Regulation Voltage VREG2 VIN = 5V, USUS = 1 ISYS = 800mA 0 to 85°C, Loading = 20mA, when VSET = 1 0 to 85°C, Loading = 20mA, when VSET = 0 mA To be continued www.richtek.com 12 DS5002-00 November 2011 RT5002 Parameter APPM Regulation Voltage Symbol ΔVAPPM Test Conditions VSYS − VAPPM Min 120 Typ 200 Max 280 Unit mV DPM Regulation Voltage VIN to SYS MOSFET On-Resistance BAT to SYS MOSFET On-Resistance Re-Charge Threshold VDPM ISETL = 0 4.3 4.4 4.5 V IVIN = 1000mA -- 0.2 0.35 Ω VBAT = 4.2V, ISYS = 1A -- 0.05 0.1 Ω ΔVREGCHG Battery Regulation − Recharge Level 60 100 140 mV 58.3 59.8 61.3 % -- 2 -- V 100 -- 1200 mA 570 600 630 mA 285 1.2 450 90 300 1.5 475 95 315 1.8 500 100 mA A 2.7 2.8 2.9 V -- 200 -- mV VBAT = 2V 5 10 15 % ISETL = 0, ISETU = 1 ISETL = 1, ISETU = X 5 10 15 % ISETL = 0, ISETU = 0 -- 3.3 -- % IINT = 5mA -- 200 -- mV TREG -- 125 -- °C TSD -- 155 -- °C -6.25 20 6.5 -6.75 °C V BATS Divider Ratio Current Regulation ISETA Set Voltage VISETA (Fast Charge Phase) Charge Current Setting Range ICHG Charge Current Accuracy1 ICHG1 Charge Current Accuracy2 ICHG2 VIN Current Limit IVIN Pre-Charge BAT Pre-Charge Threshold BAT Pre-Charge Threshold Hysteresis Pre-Charge Current VPRECH VBAT = 4.2V VBAT = 4V, RISETA = 1kΩ VBAT = 4V, RISETA = 1kΩ ISET = 1 VBAT = 3.8V, RISETA = 1kΩ, ISET = 0 ISETL = 1 (1.5A Mode) ISETL = 0, ISETU = 1 (500mA Mode) ISETL = 0, ISETU = 0 (100mA Mode) BAT Falling ΔVPRECH ICHG_PRE Charge Termination Detection Termination Current Ratio to Fast Charge (Except USB 100 ITERM Mode) Termination Current Ratio to I Fast Charge (USB100 Mode) TERM2 mA Login Input/Output INT Pull Down Voltage Protection Thermal Regulation Thermal Shutdown Temperature Thermal Shutdown Hysteresis Over Voltage Protection Over Voltage Protection Hysteresis Output Short Circuit Detection Threshold Battery Installation Detection Threshold at TS Time VINT ΔTSD VOVP VIN Rising ΔVOVP VIN = 7V to 5V, VOVP − ΔVOVP -- 100 -- mV VSHORT VBAT − VSYS -- 300 -- mV EN1234 = H -- 90 -- % of VP 1800 2250 2700 s Pre-Charge Fault Time tPCHG TIMER [3:0] = 0100, (1/8 x t FCHG) Fast Charge Fault Time tFCHG TIMER [3:0] = 0100 14400 18000 21600 s To be continued DS5002-00 November 2011 www.richtek.com 13 RT5002 Parameter Min Typ Max Unit -- 1 -- s tOVP -- 50 -- μs tPF -- 25 -- ms tFP -- 25 -- ms Termination Deglitch Time tTERMI -- 25 -- ms Recharge Deglitch Time tRECHG -- 100 -- ms tNO_IN -- 25 -- ms tTS -- 25 -- ms tSHORT -- 250 -- μs Short Circuit Recovery Time Other tSHORT-R -- 64 -- ms VP Regulation Voltage VVP VDDM = 4.2V 3.234 3.3 3.366 V VP Load Regulation VP Under Voltage Lockout Threshold TS Battery Detect Threshold VVP VP Source Out 2mA -- -- -0.1 V Falling Threshold -- 0.8 -- V 2.75 2.85 2.95 V 73 74 75 59 60 61 -- 1 -- 27 28 29 37 38 39 -- 1 -- 63 64 65 53 54 55 -- 1 -- 34 35 36 39 40 41 -- 1 -- PGOOD Deglitch Time Input Over Voltage Blanking Time Pre-Charge to Fast-Charge Deglitch Time Fast-Charge to Pre-Charge Deglitch Time Input Power Loss to SYS LDO Turn-Off Delay Time Pack Temperature Fault Detection Deglitch Time Short Circuit Deglitch Time Symbol tPGOOD Test Conditions Time measured from VIN : 0 to 5V 1μs rise-time to 2 PGOOD = 1 in I C Register VTS NTC Low Temperature Trip Point (0°C) VCOLD Low Temperature Trip Point Hysteresis (near 0°C) ΔVCOLD High Temperature Trip Point (60°C) VHOT High Temperature Trip Point Hysteresis (near 60°C) ΔVHOT Low Temperature Trip Point (10°C) for JEITA Rising Threshold when TSSEL = L (100k NTC) Rising Threshold when TSSEL = H (10k NTC) Falling Threshold when TSSEL = L Falling Threshold when TSSEL = H Rising Threshold when TSSEL = L (100k NTC) Rising Threshold when TSSEL = H (10k NTC) Low Temperature Trip Point Hysteresis (near 10°C) for JEITA High Temperature Trip Point (45°C) for JEITA High Temperature Trip Point Hysteresis (near 45°C) for JEITA www.richtek.com 14 Falling Threshold when TSSEL = L Falling Threshold when TSSEL = H DS5002-00 % of VP % of VP % of VP % of VP % of VP % of VP % of VP % of VP November 2011 RT5002 (VDDM = 3.3V, TA = 25°C, unless otherwise specified) Parameter Symbol Test Conditions Min Typ Max Unit Logic-High 2.0 -- -- Logic-Low -- -- 0.8 -- -- 400 kHz tHD;STA 0.6 -- -- μs tLOW 1.3 -- -- μs Logic Inputs (SDA SCL) SDA, SCL Input Threshold Voltage V 2 I C Timing Characteristics SCL Clock Rate Hold Time (Repeated) START Condition. After this period, the first clock pulse is generated LOW Period of SCL Clock fSCL VDDM = 3.3V HIGH Period of SCL Clock tHIGH Set-up Time for Repeated START tSU;STA Condition Data Hold Time tHD;DAT 0.6 -- -- μs 0.6 -- -- μs 0 -- 0.9 μs Data Set-up Time tSU;DAT 100 -- -- ns Set-up Time for STOP Condition Bus Free Time between a STOP and START Condition Rise Time of both SDA and SCL Signals Fall Time of both SDA and SCL Signals SDA and SCL Output Low Sink Current tSU;STO 0.6 -- -- μs tBUF 1.3 -- -- μs tR 20 -- 300 ns tF 20 -- 300 ns 2 -- -- mA IOL SDA or SCL Voltage = 0.4V Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability. Note 2. Guaranteed by design. Note 3. θJA is measured in natural convection at TA = 25° C on a high-effective thermal conductivity four-layer test board of JEDEC 51-7 thermal measurement standard. The measurement case position of θJC is on the exposed pad of the package. Note 4. Devices are ESD sensitive. Handling precaution is recommended. Note 5. The device is not guaranteed to function outside its operating conditions. DS5002-00 November 2011 www.richtek.com 15 RT5002 Typical Operating Characteristics CH2 Step-Down Efficiency vs. Output Current CH1 Step-Up Efficiency vs. Output Current 100 100 90 90 Efficiency (%) 80 70 60 50 = = = = = = = 2.7V 3V 3.3V 3.6V 3.9V 4.2V 4.4V 80 Efficiency (%) VSYS VSYS VSYS VSYS VSYS VSYS VSYS 40 30 70 VSYS VSYS VSYS VSYS VSYS 60 50 10 40 30 10 VOUT = 5V, COUT = 10μF x 2, L = 2.2μH VOUT = 3.3V, COUT = 10μF, L = 2.2μH 0 0 10 100 10 1000 100 1000 Output Current (mA) Output Current (mA) CH3 Step-Down Efficiency vs. Output Current CH4 Step-Down Efficiency vs. Output Current 100 100 90 90 80 80 VSYS VSYS VSYS VSYS VSYS VSYS VSYS 70 60 50 40 = = = = = = = 2.7V 3V 3.3V 3.6V 3.9V 4.2V 4.4V Efficiency (%) Efficiency (%) 3.4V 3.7V 3.9V 4.2V 4.4V 20 20 30 20 70 VSYS VSYS VSYS VSYS VSYS VSYS VSYS 60 50 40 30 = = = = = = = 2.7V 3V 3.3V 3.6V 3.9V 4.2V 4.4V 20 10 10 VOUT = 1.8V, COUT = 10μF, L = 2.2μH 0 VOUT = 1V, COUT = 10μF, L = 2.2μH 0 10 100 1000 10 Output Current (mA) 100 90 90 80 80 60 50 40 30 Efficiency (%) 70 = = = = = = = 1000 CH6 Inverting Efficiency vs. Output Current 100 VSYS VSYS VSYS VSYS VSYS VSYS VSYS 100 Output Current (mA) CH5 Step-Up Efficiency vs. Output Current Efficiency (%) = = = = = 2.7V 3V 3.3V 3.6V 3.9V 4.2V 4.4V 20 70 VSYS VSYS VSYS VSYS VSYS VSYS VSYS 60 50 40 30 = = = = = = = 2.7V 3V 3.3V 3.6V 3.9V 4.2V 4.4V 20 10 VOUT = 15V, COUT = 10μF x 2, L = 10μH 0 10 VOUT = −7V, COUT = 10μF x 2, L = 10μH 0 1 10 Output Current (mA) www.richtek.com 16 100 1 10 100 Output Current (mA) DS5002-00 November 2011 RT5002 CH7 Efficiency vs. Input Voltage CH1 Step-Up Output Voltage vs. Output Current 100 5.20 90 5.15 Output Voltage (V) Efficiency (%) 80 70 60 50 40 30 20 5.10 5.05 VSYS = 3.4V VSYS = 4.4V 5.00 4.95 10 4WLEDs, IOUT = 25mA, COUT = 1μF VOUT = 5V 0 4.90 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 0 100 Input Voltage (V) 400 1.825 3.33 1.820 3.32 VSYS = 3.6V VSYS = 5V 3.30 3.29 1.815 VSYS = 4.4V VSYS = 3.4V VSYS = 2.7V 1.810 1.805 VOUT = 3.3V VOUT = 1.8V 1.795 0 100 200 300 400 500 600 0 100 Load Current (mA) 300 400 500 600 CH5 Step-Up Output Voltage vs. Output Current 15.4 1.015 15.3 Output Voltage (V) 1.020 1.010 1.005 VSYS = 4.4V VSYS = 3.4V VSYS = 2.7V 1.000 200 Load Current (mA) CH4 Step-Down Output Voltage vs. Output Current Output Voltage (V) 600 1.800 3.28 0.995 15.2 15.1 VSYS = 3.4V VSYS = 4.4V 15.0 14.9 VOUT = 1V 0.990 VOUT = 15V 14.8 0 100 200 300 400 Load Current (mA) DS5002-00 500 CH3 Step-Down Output Voltage vs. Output Current 3.34 Output Voltage (V) Output Voltage (V) 300 Load Current (mA) CH2 Step-Down Output Voltage vs. Output Current 3.31 200 November 2011 500 600 0 20 40 60 80 100 Load Current (mA) www.richtek.com 17 RT5002 Power On CH6 Inverting Output Voltage vs. Output Current -7.12 VOUT_CH1 (5V/Div) Output Voltage (V) -7.14 -7.16 VOUT_CH2 (2V/Div) VSYS = 4.4V VSYS = 3.4V VSYS = 2.7V -7.18 -7.20 VOUT_CH3 (2V/Div) -7.22 VOUT_CH4 (2V/Div) VOUT = −7V -7.24 0 20 40 60 80 VBAT = 3.7V Time (2.5ms/Div) 100 Load Current (mA) Power Off Power On VOUT_CH1 (5V/Div) VOUT_CH5 (10V/Div) VOUT_CH2 (2V/Div) VOUT_CH6 (5V/Div) VOUT_CH3 (2V/Div) VOUT_CH4 (2V/Div) VBAT = 3.7V, SEQ56 = 1 VBAT = 3.7V Time (1ms/Div) Time (5ms/Div) Power Off Power On VOUT_CH5 (10V/Div) VOUT_CH5 (10V/Div) VOUT_CH6 (5V/Div) VOUT_CH6 (5V/Div) VBAT = 3.7V, SEQ56 = 1 Time (2.5ms/Div) www.richtek.com 18 VBAT = 3.7V, SEQ56 = 0 Time (5ms/Div) DS5002-00 November 2011 RT5002 Power Off VOUT_CH5 (10V/Div) CH1 Output Voltage Ripple LX1 (2V/Div) VOUT_CH6 (5V/Div) VOUT_CH1_ac (10mV/Div) VBAT = 3.7V, VOUT = 5V IOUT = 400mA, COUT = 10μF x 2, L = 2.2μH VBAT = 3.7V, SEQ56 = 0 Time (5ms/Div) Time (500ns/Div) CH2 Output Voltage Ripple CH3 Output Voltage Ripple LX2 (2V/Div) LX3 (2V/Div) VOUT_CH2_ac (5mV/Div) VOUT_CH3_ac (5mV/Div) VBAT = 3.7V, VOUT = 3.3V IOUT = 400mA, COUT = 10μF, L = 2.2μH VBAT = 3.7V, VOUT = 1.8V IOUT = 400mA, COUT = 10μF, L = 2.2μH Time (500ns/Div) Time (500ns/Div) CH4 Output Voltage Ripple CH5 Output Voltage Ripple LX4 (2V/Div) LX5 (5V/Div) VOUT_CH4_ac (5mV/Div) VOUT_CH5_ac (10mV/Div) VBAT = 3.7V, VOUT = 1V IOUT = 400mA, COUT = 10μF, L = 2.2μH Time (500ns/Div) DS5002-00 November 2011 VBAT = 3.7V, VOUT = 15V IOUT = 30mA, COUT = 10μF x 2, L = 10μH Time (1μs/Div) www.richtek.com 19 RT5002 CH1 Load Transient Response CH6 Output Voltage Ripple LX6 (5V/Div) IOUT (100mA/Div) VOUT_CH6_ac (10mV/Div) V OUT_CH1_ac (100mV/Div) VBAT = 3.7V, VOUT = −7V IOUT = 50mA, COUT = 10μF x 2, L = 10μH VBAT = 3.7V, VOUT = 5V IOUT = 0A to 300mA, COUT = 10μF x 2, L = 2.2μH Time (1μs/Div) Time (250μs/Div) CH2 Load Transient Response CH3 Load Transient Response IOUT (100mA/Div) IOUT (100mA/Div) V OUT_CH2_ac (50mV/Div) V OUT_CH3_ac (10mV/Div) VBAT = 3.7V, VOUT = 3.3V IOUT = 0A to 300mA, COUT = 10μF, L = 2.2μH VBAT = 3.7V, VOUT = 3.3V IOUT = 100mA to 300mA, COUT = 10μF, L = 2.2μH Time (250μs/Div) Time (250μs/Div) CH4 Load Transient Response CH5 Load Transient Response IOUT (100mA/Div) IOUT (20mA/Div) V OUT_CH4_ac (10mV/Div) V OUT_CH5_ac (50mV/Div) VBAT = 3.7V, VOUT = 1V IOUT = 100mA to 300mA, COUT = 10μF, L = 2.2μH Time (250μs/Div) www.richtek.com 20 VBAT = 3.7V, VOUT = 15V IOUT = 10mA to 30mA, COUT = 10μF X 2, L = 10μH Time (250μs/Div) DS5002-00 November 2011 RT5002 Charger On/Off Control from ENCH CH6 Load Transient Response VBAT = 3.7V, VOUT = −7V, IOUT = 15mA to 50mA COUT = 10μF x 2, L = 10μH I2CEN (5V/Div) IOUT (20mA/Div) VBAT (5V/Div) V OUT_CH6_ac (10mV/Div) IBAT (500mA/Div) VVP = 3.3V USB 500mA Mode, VIN = 5V, VBAT = Real Battery Time (250μs/Div) Time (25ms/Div) Charger On/Off Control from VIN TS Inserted / Removed VIN (5V/Div) VBAT (5V/Div) VBAT (5V/Div) VTS (2V/Div) IBAT (500mA/Div) IBAT (500mA/Div) VVP = 3.3V USB 500mA Mode, VIN = 5V, VBAT = Real Battery IBAT (1A/Div) Time (500ms/Div) Time (500ms/Div) VIN Removal VIN Hot-Plug with NTC/without Battery VIN = 5V, VBAT = Real Battery, VVP = 3.3V RSYS = 10Ω, ISETL = 1 I IN (500mA/Div) V SYS (5V/Div) V SYS (5V/Div) VBAT (10V/Div) VBAT (10V/Div) VIN (10V/Div) VIN (10V/Div) VIN = 5V, VVP = 3.3V, RSYS = 10Ω, ISETL = 0 Time (100ms/Div) DS5002-00 VIN = 5V, VBAT = Real Battery, VVP = 3.3V November 2011 Time (100ms/Div) www.richtek.com 21 RT5002 VIN Hot-Plug without NTC/Battery VIN Hot-Plug with Battery I IN (500mA/Div) IBAT (1A/Div) V SYS (5V/Div) V SYS (5V/Div) VBAT (10V/Div) VBAT (10V/Div) VIN (10V/Div) VIN (10V/Div) VIN = 5V, VVP = 3.3V VBAT = Real Battery, RSYS = 10Ω, ISETL = 1 VIN = 5V, VVP = 3.3V, RSYS = 10Ω, ISETL = 0 Time (100ms/Div) Time (100ms/Div) VIN Over Voltage Protection Battery Regulation Voltage vs. Temperature IBAT (1A/Div) VIN (10V/Div) V SYS (10V/Div) VBAT (10V/Div) VIN = 5V to 15V VBAT = Real Battery, RSYS = 10Ω, ISETL = 1 Battery Regulation Voltage (V) 4.300 4.275 4.250 4.225 4.200 4.175 4.150 4.125 VIN = 5V, ISYS = 0.5A 4.100 Time (500ms/Div) -50 -25 0 25 50 75 100 125 Temperature (°C) OVP Threshold Voltage vs. Temperature VIN - VSYS Dropout Voltage vs. Temperature 450 6.55 420 Dropout Voltage (mV) OVP Threshold Voltage (V) 6.60 Rising 6.50 6.45 Falling 6.40 6.35 6.30 6.25 VIN = 5V, VBAT = 3.7V 6.20 390 360 330 300 270 240 VIN = 5V, ISYS = 1A 210 -50 -25 0 25 50 Temperature (°C) www.richtek.com 22 75 100 125 -50 -25 0 25 50 75 100 125 Temperature (°C) DS5002-00 November 2011 RT5002 Charge Current vs. Temperature 90 500 85 450 Charge Current (mA) Dropout Voltage (mV) VBAT - VSYS Dropout Voltage vs. Temperature 80 75 70 65 60 55 400 350 300 250 200 150 100 VBAT = 3.7V, VVP = 3.3V USB 500mA Mode, VIN = 5V 50 VBAT = 3.7V, ISYS = 1A 50 0 -50 -25 0 25 50 75 100 125 -50 -25 Temperature (°C) 25 50 75 100 125 Temperature (°C) Battery Regulation Voltage vs. Temperature Pre-Charge Current vs. Battery Voltage 4.300 130.0 4.275 127.5 Pre-Charge Current (mA) Battery Regulation Voltage (V) 0 4.250 4.225 4.200 4.175 4.150 4.125 125.0 122.5 120.0 117.5 115.0 112.5 VIN = 5V, RISEAT = 0.5kΩ VIN = 5V 4.100 110.0 -50 -25 0 25 50 75 100 125 Temperature (°C) 2 2.2 2.4 2.6 2.8 3 Battery Voltage (V) Fast-Charge Current vs. Battery Voltage Fast-Charge Current (mA) 700 675 650 625 600 575 550 525 VIN = 5V, RISEAT = 1kΩ 500 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 Battery Voltage (V) DS5002-00 November 2011 www.richtek.com 23 RT5002 Application Information Power Converter Unit The RT5002 is an integrated power system for digital still cameras and other small handheld devices. It includes six DC/DC converters as well as one WLED driver, one RTC LDO, and a fully integrated single-cell Li-ion battery charger ideal for portable applications. CH1 : Step-up synchronous current mode DC/DC converter with internal power MOSFETs and compensation network. The P-MOSFET body can be controlled to disconnect the load. It is suitable for providing power to the motor. CH2 to CH4 : Step-down synchronous current mode DC/ DC converter with internal power MOSFETs and compensation network. These channels supply the power for I/O, DRAM, and core. They can be operated at 100% maximum duty cycle to extend battery operating voltage range. When the input voltage is close to the output voltage, the converter enters low dropout mode with low output ripple. CH5 : High voltage step-up synchronous current mode DC/DC converter with internal power MOSFET and compensation network. The P-MOSFET body can be controlled to disconnect the load. This channel supplies the CCD+ bias. CH6 : Asynchronous inverting current mode DC/DC converter with internal power MOSFET and compensation network. An external Schottky diode is required. This channel supplies the CCD− bias. CH7 : WLED driver operating in either current source mode or synchronous step-up mode with internal power MOSFET and compensation network. The operation mode is determined via the I2C interface. The P-MOSFET body in step-up mode can be controlled to disconnect the load. Output Voltage Design Equation of CH1 to CH4 : The output voltage can be set by the following equation : VOUT = (1 + RH / RL) x VFB where VFB is 0.8V typically, RH is R1, R3, R5, and R7 respectively for CH1 to 4, and RL is R2, R4, R6, and R8 respectively for CH1 to 4. Output Voltage Design Equation of CH5 : The output voltage can be set by the following equation : VOUT_CH5 = (1 + R9 / R10) x VFB5 where VFB5 is 1.25V typically. Output Voltage Design Equation of CH6 : The output voltage can be set by the following equation : VOUT_CH6 = −(R11 / R12) x (1.2V) + 0.6V where R11 and R12 are the feedback resistors connected to FB6, 1.2V equals to (VREF − VFB6), and 0.6V is the typical value of VFB6. Reference Voltage The RT5002 provides a precise 1.8V reference voltage, VREF, with sourcing capability of 100μA. Connect a 0.1μF ceramic capacitor from the VREF pin to GND. Reference voltage is enabled by I 2C register bit EN56 = 1. Furthermore, this reference voltage is internally pulled to GND at shutdown. CH5 and CH6 Power Sequence : CH5 and CH6 are enabled together via I2C interface and their power on sequence can be chosen via I2C register setting. CH1 to CH4 operate in PWM mode with 2MHz, while CH5 to CH7 operate in PWM mode with 1MHz switching frequency. RTC_LDO : 3.3V output LDO with low quiescent current and reverse leakage prevention from output node. www.richtek.com 24 DS5002-00 November 2011 RT5002 SEQ56 = 1 EN56 10ms Wait until VOUT6 > -0.12V Constant Current Pre-Charge. CH5 VOUT 18ms 5ms CH6 VOUT SEQ56 = 0 EN56 16ms 10ms Constant Current PreCharge. CH5 VOUT 2ms 5ms Wait until VOUT5 < 0.5V CH6 VOUT CH7 : WLED Driver CH7 is a WLED driver that can operate in either current source mode or synchronous step-up mode, as determined by the I2C interface. When CH7 works in current source mode, it sources an LED current out of LX7 pin and regulates the current by FB7 voltage. The LED current is defined by the FB7 voltage as well as the external resistor b[7] (MSB) b[6] b[5] Meaning MOD7 SEQ56 EN56 Default 0 0 0 0 0 Read/Write R/W R/W R/W R/W R/W Address 0x0 MOD7 SEQ56 EN56 between FB7 and GND. The FB7 regulation voltage can be set in 31 steps from 8mV to 250mV, typically, via I2C interface. If CH7 works in synchronous step-up mode, it integrates synchronous step-up mode with an internal MOSFET and internal compensation to output a voltage up to 15V. The LED current is also set via an external resistor and FB7 regulation voltage. b[4] b[3] b[1] b[0] (LSB) 0 0 0 R/W R/W R/W b[2] EN7_DIM7 [4:0] 1 CH7 in step-up mode 0 CH7 in current source mode 1 CH5/6 power on sequence is CH5 CH6, power off sequence is CH6 CH5 0 CH5/6 power on sequence is CH6 CH5, power off sequence is CH5 CH6 1 Enable (turn on) CH5 and CH6 by preset sequence 0 Disable (turn off) CH5 and CH6 by preset Enable CH7 and define FB7 regulation voltage 00000 Ch7 turn off EN7_DIM7 00001 to [4:0] Ch7 turn on and dimming ratio : VFB7 = EN7_DIM7 [4:0] / 31 x 0.25V 11111 DS5002-00 November 2011 www.richtek.com 25 RT5002 CH7 WLED Current Dimming Control CH1 to CH4 Power off Sequence is : If CH7 is in synchronous step-up mode or current source mode, the WLED current is set by an external resistor. Regardless of the mode, dimming is always controlled by the I2C interface. When EN1234 goes low, CH2 will turn off first and internally discharge output. When FB2 < 0.1V, CH4 will turn off and also internally discharge output via the LX4 pin. When FB4 < 0.1V, CH3 will turn off and internally discharge output via the LX3 pin. Likewise, when FB3 < 0.1V, CH1 will turn off and discharge output. After FB1 < 0.1V, CH1 to 4 shutdown sequence will be completed. The WLED current can be set by the following equations : ILED (mA) = [250mV / R (W)] x EN7_DIM7 [4:0] / 31 where R is the current sense resistor from FB7 to GND and EN7_DIM7 [4:0] / 31 ratio refers to the I2C control register file. It is recommended that CH7 input power connects to the node SYS in order to prevent abnormal CH7 start-up. Charger Unit The RT5002 includes a Li-ion battery charger with Automatic Power Path Management. The charger is designed to operate in below modes : VDDM Bootstrap Pre-Charge Mode To support bootstrap function, the RT5002 includes a power selection circuit which selects between SYS and PVD1 to create the internal node voltage VDDI and VDDM. When the output voltage is lower than 2.8V, the charging current will be reduced to a fast-charge current ratio set by RISETA to protect the battery life-time. VDDM is the power of the RT5002 PMU control circuits which must be connected to an external decoupling capacitor by way of the VDDM pin. VDDI is the power input of the RTC LDO. The output PVD1 of CH1 can bootstrap VDDM and VDDI. The RT5002 includes UVLO circuits to monitor VDDM and SYS voltage status. RTC LDO The RT5002 provides a 3.3V output LDO for real-time clock. The LDO features low quiescent current (3µA) and high output voltage accuracy. This LDO is always on, even when the system is shut down. For better stability, it is recommended to connect a 0.1µF capacitor to the RTCPWR pin. The RTC LDO includes pass transistor body diode control to avoid the RTCPWR node from backcharging into the input node VDDI. Fast-charge Mode When the output voltage is higher than 3V, the charging current will be equal to the fast-charge current set by RISETA. Constant Voltage Mode When the output voltage is near 4.2V and the charging current falls below the termination current, after a deglitch time check of 25ms, the charger will become disabled. Re-charge Mode When the chip is in charge termination mode, the charging current gradually goes down to zero. However, once the voltage of the battery drops to below 4.1V, there will be a deglitch time of 100ms and then the charging current will resume again. Power On/Off Sequence for CH1 to CH4 EN1234 will turn on/off CH1 to CH4 in preset sequence. CH1 to CH4 Power on Sequence is : When EN1234 goes high, CH1 will turn on first. 3.5ms after CH1 is turned on, CH3 will turn on. 3.5ms after CH3 is turned on, CH4 will turn on. 3.5ms after CH4 is turned on, CH2 will turn on. www.richtek.com 26 DS5002-00 November 2011 RT5002 I2C Register for Charging Status Setting b[7] (MSB) b[6] b[5] b[4] b[3] b[2] b[1] Meaning ISETU ISETL USUS NoBAT EOC PGOOD TS_FAULT Default 1 0 0 0 0 0 0 SAFE 0 Read/Write R/W R/W R/W R R R R R Address 0x2 b[0] (LSB) ISETU and ISETL : Set VIN Input Current Limit ISETU ISETL VIN Input Current Limit 0 1 0 0 95mA 475mA X 1 1.5A USUS : VIN Suspend Control Input 1 Suspend USUS 0 No Suspend Battery Installation Detection 1 No Battery Installed (TS > 90% of VP) NoBAT 0 BAT Installed (TS < 90% of VP) End_Of_Charge Status EOC 1 Charging Done or Recharging after Termination 0 During Charging VIN Power Good Status PGOOD 0 VIN < VU VLO 0 1 VUVLO < VIN < V BAT + VOS_H VBAT + VOS_ H < VIN < VOVP 0 VIN > VOVP Temperature Sensing Status TS_FAULT 1 0 TS is at fault (too cold, too hot) or VP triggers UVLO. TS and VP are normal. Charger Safety Timer Status SAFE DS5002-00 1 Safety timer expired. 0 Otherwise November 2011 www.richtek.com 27 RT5002 Interrupt Indicator Battery Installation Detection The RT5002 provides the interrupt indicator output pin (INT). INT is an open drain pin. RT5002 also detect TS voltage to judge the battery installation status. If PMU is enabled but TS voltage > 90% of VP node voltage, RT5002 would set the bit NoBAT = 1 in I2C register bank 0x2. When the status bits (PGOOD, TS_FAULT, EOC, SAFE) of I2C register address 0x2 toggle, the INT is set to be low. After Reg 0x2 is read or PMU turn off, INT goes high. End_Of_Charge (EOC) Status The bit EOC in I2C register bank 0x2 can show the EOC status. If EOC = 1, the Charger is in EOC State. Wake-Up Detector Wake-Up Detector detects VIN or BAT plug-in events. Once one of them plug-in, WAKE pin asserts one 55ms-width high pulse. The timing diagram is shown below. Suspend Mode Set USUS = 1, and the charge will enter Suspend Mode. In Suspend Mode, IUSUS (MAX) < 300µA. WAKE Timing Diagram Battery Sense 3.3V VIN When PMU is turned on, BATS = 59.8% x BAT, The RT5002 detects the battery level from BATS voltage level. 2.7V BAT WAKE 55ms 55ms VOUT2 4 ±0.4ms BATS Charge State Charger State Bit EOC 0 Bit PGOOD 1 Bit SAFE 0 Charging Suspended by Thermal Loop 0 1 0 Safety Timers Expired 0 1 1 Charging Done 1 1 0 Recharging after Termination 1 1 0 IC Disabled or no Valid Input Power 0 0 0 Charging www.richtek.com 28 DS5002-00 November 2011 RT5002 b[7] (MSB) Address 0x1 Meaning Default Read/Write 0 R/W b[6] b[5] TIMER [3:0] 1 0 R/W R/W b[4] b[3] b[2] b[1] 0 R/W ENCH 0 R/W JEITA 0 R/W ISET 0 R/W b[0] (LSB) VSET 0 R/W VIN Power Good Status TIMER [3:0] ENCH JEITA 0000 to 1111 Fast Charge timeout period : tFCHG = (TIMER [3:0] + 1) hours. (ISET = 1) Pre-Charge timeout period : tPCHG = tFCHG / 8 1 Disable charger 0 Enable charger 1 Charger operation controlled by I C bits VSET and ISET 0 Charger operation automatically in JEITA temperature standard 2 Half Charge Current Set Input ISET 1 For ICHG1 : time = tFCHG 0 For ICHG2 : time = 2 x tFCHG, I CHG2 = ICHG1 / 2 Battery Regulation Set Input VSET 1 Battery regulation voltage is 4.2V 0 Battery regulation voltage is 4.05V Charging Current Decision The charge current can be set according to the following equations : If ISET = 1 (for ICHG1 ) ICHG_FAST = VISETA × 300 RISETA If ISET = 0 (for ICHG2 ) V ICHG_FAST = ISETA × 150 RISETA ICHG_PRE = 10% × ICHG_FAST However, once the duration exceeds the fault time, the register 0x2 bit [0] will be changed from 0 to 1, and the charge current will be reduced to about 1mA. Time fault release methods : (1) Re-plug power (2) Toggle EN (3) Enter/exit suspend mode (4) Remove Battery Time Fault During the fast charge phase, several events may increase the charging time. For example, the system load current may have activated the APPM loop which reduces the available charging current or the device has entered thermal regulation because the IC junction temperature has exceeded TREG. DS5002-00 November 2011 (5) OVP If ISET = 1 (for ICHG1 ) time = tFCHG If ISET = 0 (for ICHG2 ) time = 2 × tFCHG www.richtek.com 29 RT5002 JEITA Battery Temperature Standard CV regulation voltage will change at the following battery temperature ranges : 0°C to 10°C and 45°C to 60°C. CC regulation current will change at the following battery temperature ranges : 0°C to 10°C and 45°C to 60°C. R2 + RCOLD = 0.74 RCOLD +R1+R2 (1) R2 + RHOT = 0.28 RHOT +R1+R2 (2) Form (1), (2) R1 = Battery Pack Temperature Monitoring The battery pack temperature monitoring function can be realized by connecting the TS pin to an external Negative Temperature Coefficient (NTC) thermistor to prevent over temperature condition. Charging is suspended when the voltage at the TS pin is out of normal operating range. The internal timer is then paused, but the value is maintained. When the TS pin voltage returns back to normal operating range, charging will resume and the safe charge timer will continue to count down from the point where it was suspended. RCOLD − RHOT 2.457 R2 = 0.389 × R1 − RHOT If R2 < 0 RCOLD = 0.74 RCOLD +R1 Form (3) R1 = RCOLD − RCOLD 0.74 Case 2 : TSSEL = H (For 10kΩ NTC) : VP VP Case 1 : TSSEL = L (For 100kΩ NTC) : TS TS 0.74 x VP + R2 0.28 x VP + RNTC Too Cold Temperature + Too Cold Too Hot 0.38 x VP RNTC Figure 2 Too Cold Temperature RCOLD = RNTC Too Hot Temperature Too Cold Too Hot R2 + RCOLD = 0.6 RCOLD +R1+R2 (1) R2 + RHOT = 0.38 RHOT +R1+R2 (2) Form (1), (2) R1 = RCOLD − RHOT 0.9 R2 = 0.6 × R1− RHOT If R2 < 0 Too Hot Temperature RCOLD = 0.6 RCOLD +R1 RHOT = RNTC Form (3) R1 = www.richtek.com 30 + R2 Figure 1 RCOLD = RNTC - RHOT = RNTC VP VP R1 0.6 x VP R1 The 3.3V at VP pin is buffered by the RT5002 once it is in charging state or its PMU part is enabled. For 100kΩ NTC thermistor, the input pin, TSSEL, should be connected to GND. For 10kΩ NTC thermistor, the input pin, TSSEL, should be connected to VIN. TSSEL determines the TS threshold levels for 0°C and 60°C. It also defines the TS threshold levels used in JEITA operation. The choosing method of R1 and R2 to meet battery temperature monitoring is shown below : (3) (3) RCOLD − RCOLD 0.6 DS5002-00 November 2011 RT5002 The Control Temperature Used in JEITA Operation : The above calculation gives R1 and R2. JEITA control thresholds for full charging current and 4.2V regulation voltage are at TS/VP ratio = 40% and 54% (for TSSEL = H), 35% and 64% (for TSSEL = L). With the ratio, the corresponding NTC thermistor resistances from the resistors in the voltage divider circuit can be obtained. According to the NTC resistances, the corresponding temperatures can be found. The two temperatures are the control temperatures used in JEITA operation. Power Switch For the charger, there are three power scenarios : (1) When a battery and an external power supply (USB or adapter) are connected simultaneously : If the system load requirements exceed that of the input current limit, the battery will be used to supplement the current to the load. However, if the system load requirements are less than that of the input current limit, the excess power from the external power supply will be used to charge the battery. charging current is reduced while the SYS current is increased to maintain system output. In APPM mode, the battery termination function is disabled. Battery Supplement Mode Short Circuit Protect In APPM mode, the SYS voltage will continue to drop if the charge current is zero and the system load increases beyond the input current limit. When the SYS voltage decreases below the battery voltage, the battery will kick in to supplement the system load until the SYS voltage rises above the battery voltage. While in supplement mode, there is no battery supplement current regulation. However, a built-in short circuit protection feature is available to prevent any abnormal current situations. While the battery is supplementing the load, if the difference between the battery and SYS voltage becomes more than the short circuit threshold voltage, SYS will be disabled. After a short circuit recovery time, tSHORT_R, the counter will be restarted. In supplement mode, the battery termination function is disabled. Note that for the battery supply mode exit condition, VBATVSYS < 0V. (2) When only the battery is connected to the system : The battery provides the power to the system. (3) When only an external power supply is connected to the system : The external power supply provides the power to the system. Input DPM Mode For the charger, the input voltage is monitored when USB100 or USB500 is selected. If the input voltage is lower than VDPM, the input current limit will be reduced to stop the input voltage from dropping any further. This can prevent the IC from damaging improperly configured or inadequately designed USB sources. APPM Mode Once the sum of the charging and system load currents becomes higher than the maximum input current limit, the SYS pin voltage will be reduced. When the SYS pin v oltage is reduced to VAPPM, the RT5002 will automatically operate in APPM mode. In this mode, the DS5002-00 November 2011 Thermal Regulation and Thermal Shutdown The charger provides a thermal regulation loop function to monitor the device temperature. If the die temperature rises above the regulation temperature, TREG, the charge current will automatically be reduced to lower the die temperature. However, in certain circumstances (such as high VIN, heavy system load, etc.) even with the thermal loop in place, the die temperature may still continue to increase. In this case, if the temperature rises above the thermal shutdown threshold, TSD, the internal switch between VIN and SYS will be turned off. The switch between the battery and SYS will remain on, however, to allow continuous battery power to the load. Once the die temperature decreases by ∆TSD, the internal switch between VIN and SYS will be turned on again and the device returns to normal thermal regulation. The internal thermal feedback circuitry regulates the die temperature to optimize the charge rate for all ambient temperatures. www.richtek.com 31 RT5002 4.16 to 4.2 to 4.23V −40°C to 85°C Battery Voltage Charging Current VRECH If VPRECH ISETL = 1, ISETU = 1 ISETL = 0, ISETU = X ITERMI = 10% x ICHG_FAST If ISETL = 0, ISETU = 0 ITERMI = 3.3% x ICHG_FAST ICHG_PRE = 10% x ICHG_FAST ITERM2 Time Figure 3 APPM Profile 1.5A Mode : VIN 5V VSYS 4.4V VAPPM 4.2V VBAT 4.0V 3A 2A IBAT 1A ISYS 0 IVIN -1A -2A -3A T1 T2 T3 T4 T5 T6 T7 ISYS VSYS IVIN IBAT T1, T7 0 SYS Regulation Voltage CHG_MAX CHG_MAX T2, T6 < I VIN_OC − CHG_MAX SYS Regulation Voltage ISYS + CHG_MAX CHG_MAX Auto Charge Voltage Threshold VIN_OC VIN_OC − ISYS VBAT − IBAT x RDS(ON) VIN_OC I SYS − I VIN_OC T3, T5 > IVIN_OC − CHG_MAX < I VIN_OC T4 www.richtek.com 32 > IVIN_OC DS5002-00 November 2011 RT5002 USB 500mA Mode : VUSB 5V VSYS 4.4V VAPPM 4.2V VBAT 4.0V 0.75A 0.5A IBAT 0.25A ISYS 0 IUSB -0.25A -0.5A -0.75A T1 T2 T3 T5 T4 T6 T7 ISYS VSYS IUSB IBAT T1, T7 0 SYS Regulation Voltage CHG_MAX CHG_MAX T2, T6 < IVIN_OC (USB) − CHG_MAX SYS Regulation Voltage ISYS + CHG_MAX CHG_MAX Auto Charge Voltage Threshold IVIN_OC (USB) IVIN_OC (USB) − ISYS VBAT − IBAT x RDS(ON) IVIN_OC (USB) ISYS − IVIN_OC (USB) T3, T5 T4 > IVIN_OC (USB) − CHG_MAX < IVIN_OC (USB) > IVIN_OC (USB) VSET vs. VREG, ISET vs. ICHG When JEITA = 1, VREG and ICHG are set by the bits VSET and ISET, respectively. VSET 4.16 to 4.2 to 4.23V When JEITA = 0, VREG and ICHG follows JEITA temperature standard. For JEITA Battery Temperature Standard : CV regulation voltage will change at the following battery Temp ranges 0°C to 10°C and 45°C to 60°C CC regulation current will change at the following battery Temp ranges 0°C to 10°C and 45°C to 60°C VREG 4.01 to 4.05 to 4.08V 4.16 to 4.2 to 4.23V ISET 4.01 to 4.05 to 4.08V 4.01 to 4.05 to 4.08V ICHG +/-5% 0°C ICHG 45°C 10°C 0.5 x ICHG +/-5% 60°C Temperature +/- 2°C ICHG +/- 5% 0.5 x ICHG +/- 5% 0.5 x ICHG +/- 5% Temperature +/- 2°C DS5002-00 November 2011 www.richtek.com 33 RT5002 RT5002 Operation State Diagram for Charging VBAT > 3V Fast-Charge State If ISET = 1 ICHG_FAST = (VISETA / RISETA) x 300 If ISET = 0 ICHG_FAST = (VISETA / RISETA) x 150 Yes No VIN – VBAT > VOS_H Yes Pre-Charge State ICHG_PRE = 10% x ICHG_FAST Sleep State If VSET = 1 Check VBAT > 4.1V If VSET = 0 Check VBAT > 3.95V No Yes No Time > tFCHG Yes No Time > tPCHG Standby State ISETL = 0 & ISETU = 1 ISETL = 1 & ISETU = X Check ICHG < 10% x ICHG_FAST If ISETL = 0 & ISETU = 0 Check ICHG < 3.3% x ICHG_FAST If Yes No Timer-Out State SAFE = 1 & ICHG to 1mA Yes No Yes VUVLO< VIN < VOVP & ENCH = 0 & USUS = 0 Re-Charge State Time > tTERMI = 25msec Charger Disable Yes Any State or V IN < VUVLO, or VIN > VOVP, Or VIN - VBAT < VOS_H or USUS = 1 or ENCH = 1 Yes If VSET = 1 Check VBAT < 4.1V If VSET = 0 Check VBAT < 3.95V Charge Done State EOC = 1 & ICHG = 0A No Operation State Diagram for TS Pin (TSSEL = L) Any State No 74% x VVP < VTS < 2.85V Or V TS < 28% x VVP No VTS > 2.85V Yes Yes TS fault State ICHG = 0A TS_FAULT = 1 www.richtek.com 34 Battery Remove State ICHG = 0A Reset timer and NoBAT = 1 DS5002-00 November 2011 RT5002 I2C Interface The RT5002 I2C slave address is by default = 0011000 (7bits), but if customers request, the slave address can be changed to 0011010 (7bits). The I2C interface supports fast mode (bit rate up to 400kb/s). The write or read bit stream (N>=1) is shown below : Read N bytes S Slave Address 0 A Register Address A Sr Slave Address Assume Address = m R/W Data 2 MSB 1 A MSB Data 1 LSB A Data for Address = m LSB A MSB Data for Address = m+1 Data N LSB A P Data for Address = m + N - 1 Write N bytes S Slave Address 0 A Register Address Assume Address = m R/W A MSB Data 1 Data for Address = m MSB LSB A MSB Data 2 Data for Address = m + 1 Data N LSB A LSB A P Data for Address = m + N - 1 Driven by Master, Driven by Slave (RT5002), P Stop, S Start, Sr Repeat Start SDA tLOW tF tSU;DAT tR tHD;STA tF tBUF tR tSP SCL tHD;STA S tHD;DAT tHIGH tSU;STO tSU;STA P Sr S I2C Register File b[7] (MSB) b[6] b[5] Meaning Default MOD7 0 SEQ56 0 EN56 0 0 0 Read/Write R/W R/W R/W R/W R/W Address 0x0 Meaning 0x1 0x2 TIMER [3:0] b[3] b[1] b[0] (LSB) 0 0 R/W R/W R/W JEITA 0 ISET VSET 0 0 R/W b[2] EN7_DIM7 [4:0] 0 Default 0 1 0 0 ENCH 0 Read/Write Meaning R/W ISETU R/W ISETL R/W USUS R/W NoBAT R/W EOC R/W PGOOD R/W TS_FAULT Default 1 0 0 0 0 0 0 SAFE 0 R R R R R R/W R/W R/W Read/Write Reset after EN1234 = L and PMU shutdown completely. DS5002-00 b[4] November 2011 www.richtek.com 35 RT5002 Thermal Considerations Layout Considerations For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula : For the best performance of the RT5002, the following PCB layout guidelines must be strictly followed. } Place the input and output capacitors as close as possible to the input and output pins respectively for good filtering. } Keep the main power traces as wide and short as possible. } The switching node area connected to LX and inductor should be minimized for lower EMI. } Place the feedback components as close as possible to the FB pin and keep these components away from the noisy devices. } Connect the GND and Exposed Pad to a strong ground plane for maximum thermal dissipation and noise protection. } The connection of RISETA should be isolated from other noisy traces. A short wire is recommended to prevent EMI and noise coupling. PD(MAX) = (TJ(MAX) − TA) / θJA where TJ(MAX) is the maximum junction temperature, TA is the ambient temperature, and θJA is the junction to ambient thermal resistance. For recommended operating condition specifications of the RT5002, the maximum junction temperature is 125°C and TA is the ambient temperature. The junction to ambient thermal resistance, θJA, is layout dependent. For WQFN40L 5x5 packages, the thermal resistance, θJA, is 36°C/ W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at TA = 25°C can be calculated by the following formula : PD(MAX) = (125°C − 25°C) / (36°C/W) = 2.778W for WQFN-40L 5x5 package Maximum Power Dissipation (W) 1 The maximum power dissipation depends on the operating ambient temperature for fixed T J(MAX) and thermal resistance, θJA. For the RT5002 package, the derating curve in Figure 4 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation. 3.20 Four-Layer PCB 2.80 2.40 2.00 1.60 1.20 0.80 0.40 0.00 0 25 50 75 100 125 Ambient Temperature (°C) Figure 4. Derating Curves for RT5002 Package www.richtek.com 36 DS5002-00 November 2011 RT5002 LX should be connected to Inductor by wide and short trace, keep sensitive compontents away from this trace. VOUT_CH1 SYS Place the feedback components as close as possible to the FB pin and keep away from noisy devices. GND C1 VOUT_CH2 C3 C24 GND R2 C21 R1 SYS L1 C2 D5 D4 C10 C9 L2 Bypass Cap 29 3 28 27 26 GND 6 25 7 24 8 23 41 22 9 21 10 11 12 13 14 15 16 17 18 19 20 WAKE FB2 TSSEL SYS L5 C14 LX5 VOUT_CH5 PVD5 FB5 R9 C13 C12 EN1234 LX3 PVD3 R10 L3 FB3 SYS GND ISETA TS VP SDA SCL PVD6 LX6 VOUT6 FB6 VREF C8 30 2 5 R8 GND C5 R5 The RISETA connection copper area should be minimized and kept far away from noise sources. GND VOUT_CH6 SYS GND C6 R11 C15 R16 RNTC C7 R6 R12 D1 VOUT_CH3 GND L6 RISETA R17 C4 R4 1 4 R3 GND 40 39 38 37 36 35 34 33 32 31 GND INT FB1 VDDM D2 FB7 VOUT_CH7 PVD7 L7 C19 LX7 GND SYS L4 BATS C20 LX4 VOUT_CH4 SYS PVD4 R7 FB4 C11 D3 C22 LX1 PVD1 RTCPWR VIN SYS SYS BAT BAT PVD2 LX2 R13 C18 C17 C16 Input/Output capacitors must be placed as close as possible to the Input/Output pins. GND Connect the Exposed Pad to a ground plane. Figure 5. PCB Layout Guide DS5002-00 November 2011 www.richtek.com 37 RT5002 Protection Type SYS Threshold (Typical) Refer to Electrical spec. UVLO SYS < 1.3V PMU Shutdown. No-delay OVP VDDM > 6V Automatic reset at VDDM < 5.75V 100ms UVLO VDDM < 2.4V PMU Shutdown. No-delay Current limit N-MOSFET current > 3A PVD1 OVP PVD1 > 6V VDDM CH1 Step-Up Protection Methods IC Shutdown Delay Time PVD1 UVP FB1 UVP PVD1 < (VSYS − 0.8V) or PVD1 < 1.28V after soft-start end. FB1 < 0.4V after pre-charge FB1 Over Load (OL) FB1 < 0.7V Current limit P-MOSFET current > 1.8A CH2 Step-Down FB2 UVP FB2 < 0.4V after soft-start end. FB2 Over Load FB2 < 0.7V Current limit P-MOSFET current > 1.6A CH3 Step-Down FB3 UVP FB3 < 0.4V after soft-start end. FB3 Over Load FB3 < 0.7V Current limit P-MOSFET current > 1.6A CH4 Step-Down FB4 UVP FB4 Over Load FB4 < 0.4V after soft-start end. FB4 < 0.7V N-MOSFET off, P-MOSFET off. Automatic reset at next clock cycle. N-MOSFET off, P-MOSFET off. N-MOSFET off, P-MOSFET off. N-MOSFET off, P-MOSFET off PMU Shutdown when OL occur each cycle until 100ms. N-MOSFET off, P-MOSFET off. Automatic reset at next clock cycle. N-MOSFET off, P-MOSFET off. PMU Shutdown when OL occur each cycle until 100ms. N-MOSFET off, P-MOSFET off. Automatic reset at next clock cycle. N-MOSFET off, P-MOSFET off. PMU Shutdown when OL occur each cycle until 100ms. N-MOSFET off, P-MOSFET off. Automatic reset at next clock cycle. N-MOSFET off, P-MOSFET off. PMU Shutdown when OL occur each cycle until 100ms. Reset Method VDDM power reset or EN1234 pin set to low VDDM power reset or EN1234 pin set to low VDDM power reset or EN1234 pin set to low 100ms VDDM power reset or EN1234 pin set to low No-delay VDDM power reset or EN1234 pin set to low 100ms VDDM power reset or EN1234 pin set to low No-delay VDDM power reset or EN1234 pin set to low 100ms VDDM power reset or EN1234 pin set to low 100ms VDDM power reset or EN1234 pin set to low 100ms VDDM power reset or EN1234 pin set to low 100ms VDDM power reset or EN1234 pin set to low 100ms VDDM power reset or EN1234 pin set to low 100ms VDDM power reset or EN1234 pin set to low 100ms VDDM power reset or EN1234 pin set to low 100ms VDDM power reset or EN1234 pin set to low 100ms VDDM power reset or EN1234 pin set to low 100ms VDDM power reset or EN1234 pin set to low To be continued www.richtek.com 38 DS5002-00 November 2011 RT5002 Protection Type CH5 Step-Up CH6 Async Inverting Threshold (Typical) Refer to Electrical spec. VIN Protection Methods N-MOSFET off, P-MOSFET off. Automatic reset at next clock cycle. N-MOSFET off, P-MOSFET off. N-MOSFET off, P-MOSFET off. PMU Shutdown when OL occur each cycle until 100ms. N-MOSFET off, P-MOSFET off. P-MOSFET off. Automatic reset at next clock cycle. Current limit N-MOSFET current > 1.2A PVD5 OVP PVD5 > 22V FB5 UVP FB5 < 0.6V after soft-start end. FB5 Over Load FB5 < 1.1V PVD5 UVP PVD5 < (VSYS −0.2V) Current limit P-MOSFET current > 1.5A PVD6 OVP PVD6 < -13V P-MOSFET off. No-delay FB6 UVP FB6 > 1.2V P-MOSFET off. 100ms FB6 Over Load FB6 > 0.74V Current limit N-MOSFET current > 0.8A CH7 WLED Thermal IC Shutdown Delay Time PMU Shutdown when OL occur each cycle until 100ms. N-MOSFET off, P-MOSFET off. Automatic reset at next clock cycle. PVD7 OVP PVD7 > 15V N-MOSFET off, P-MOSFET off. Shutdown CH7 by self Thermal shutdown Temperature > 155°C All channels stop switching No-delay 100ms VDDM power reset or EN1234 pin set to low VDDM power reset or EN1234 pin set to low VDDM power reset or EN1234 pin set to low 100ms VDDM power reset or EN1234 pin set to low 100ms VDDM power reset or EN1234 pin set to low 100ms VDDM power reset or EN1234 pin set to low VDDM power reset or EN1234 pin set to low VDDM power reset or EN1234 pin set to low 100ms VDDM power reset or EN1234 pin set to low 100ms VDDM power reset or EN1234 pin set to low No-delay No-delay VDDM power reset and Reg0x00[4 to 0] = 00000 reset or EN1234 pin set to low VDDM power reset or EN1234 pin set to low Protection Type Threshold (Typical) Refer to Electrical Spec. VIN UVLO VIN < 3.3V No-charge No-delay No latch VIN OVP VIN > 6.5V No-charge No-delay No latch DS5002-00 November 2011 Protection Methods 100ms Reset Method Charger Shutdown Delay Time Reset Method www.richtek.com 39 RT5002 Outline Dimension D SEE DETAIL A D2 L 1 E2 E e b 1 1 2 2 DETAIL A Pin #1 ID and Tie Bar Mark Options A A3 A1 Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated. Dimensions In Millimeters Dimensions In Inches Symbol Min Max Min Max A 0.700 0.800 0.028 0.031 A1 0.000 0.050 0.000 0.002 A3 0.175 0.250 0.007 0.010 b 0.150 0.250 0.006 0.010 D 4.950 5.050 0.195 0.199 D2 3.250 3.500 0.128 0.138 E 4.950 5.050 0.195 0.199 E2 3.250 3.500 0.128 0.138 e L 0.400 0.350 0.016 0.450 0.014 0.018 W-Type 40L QFN 5x5 Package Richtek Technology Corporation Richtek Technology Corporation Headquarter Taipei Office (Marketing) 5F, No. 20, Taiyuen Street, Chupei City 5F, No. 95, Minchiuan Road, Hsintien City Hsinchu, Taiwan, R.O.C. Taipei County, Taiwan, R.O.C. Tel: (8863)5526789 Fax: (8863)5526611 Tel: (8862)86672399 Fax: (8862)86672377 Email: [email protected] Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek. www.richtek.com 40 DS5002-00 November 2011