NTST30100CT D

NTST30100CT,
NTSB30100CT-1G,
NTSJ30100CTG,
NTSB30100CTG
Very Low Forward Voltage
Trench-based Schottky
Rectifier
http://onsemi.com
PIN CONNECTIONS
1
Exceptionally Low VF = 0.455 V at IF = 5 A
2, 4
3
Features
• Fine Lithography Trench−based Schottky Technology for Very Low
•
•
•
•
•
•
Forward Voltage and Low Leakage
Fast Switching with Exceptional Temperature Stability
Low Power Loss and Lower Operating Temperature
Higher Efficiency for Achieving Regulatory Compliance
Low Thermal Resistance
High Surge Capability
Pb−Free and Halide−Free Packages are Available
4
1
2
3
Typical Applications
ATX and Flat Panel Display
High Frequency and DC−DC Converters
Freewheeling and OR−ing diodes
Reverse Battery Protection
Instrumentation
1
Mechanical Characteristics
• Case: Epoxy, Molded
• Epoxy Meets Flammability Rating UL 94−0 @ 0.125 in
• Finish: All External Surfaces Corrosion Resistant and Terminal
Leads are Readily Solderable
• Lead Temperature for Soldering Purposes: 260°C Maximum for
12
3
I2PAK
CASE 418D
STYLE 3
4
• Switching Power Supplies including Notebook / Netbook Adapters,
•
•
•
•
TO−220AB
CASE 221A
STYLE 6
4
2
TO−220FP
CASE 221AH
D2PAK
CASE 418B
3
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 5 of this data sheet.
10 sec
© Semiconductor Components Industries, LLC, 2013
January, 2013 − Rev. 5
1
Publication Order Number:
NTST30100CT/D
NTST30100CT, NTSB30100CT−1G, NTSJ30100CTG, NTSB30100CTG
MAXIMUM RATINGS
Rating
Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage
Average Rectified Forward Current
(Rated VR, TC = 115°C)
Per device
Per diode
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20 kHz, TC = 110°C)
Per device
Per diode
Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz)
Symbol
Value
Unit
VRRM
VRWM
VR
100
V
IF(AV)
A
30
15
IFRM
A
60
30
IFSM
160
A
TJ
−40 to +150
°C
Storage Temperature
Tstg
−40 to +150
°C
Voltage Rate of Change (Rated VR)
dv/dt
10,000
V/ms
Operating Junction Temperature
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
THERMAL CHARACTERISTICS
Rating
Symbol
NTST30100CTG,
NTSB30100CT−1G
NTSB30100CTG
NTSJ30100CTG
Unit
Maximum Thermal Resistance per Diode
Junction−to−Case
Junction−to−Ambient
RqJC
RqJA
2.5
70
1.14
46.6
4.09
105
°C/W
°C/W
ELECTRICAL CHARACTERISTICS (Per Leg unless otherwise noted)
Rating
Symbol
Maximum Instantaneous Forward Voltage (Note 1)
(IF = 5 A, TJ = 25°C)
(IF = 7.5 A, TJ = 25°C)
(IF = 15 A, TJ = 25°C)
vF
(IF = 5 A, TJ = 125°C)
(IF = 7.5 A, TJ = 125°C)
(IF = 15 A, TJ = 125°C)
Maximum Instantaneous Reverse Current (Note 1)
(VR = 70 V, TJ = 25°C)
(VR = 70 V, TJ = 125°C)
IR
(Rated dc Voltage, TJ = 25°C)
(Rated dc Voltage, TJ = 125°C)
Typ
Max
0.516
0.576
0.734
−
−
0.85
0.455
0.522
0.627
−
−
0.68
7.2
8.0
65
20
1. Pulse Test: Pulse Width = 300 ms, Duty Cycle v 2.0%
http://onsemi.com
2
Unit
V
mA
mA
500
35
mA
mA
NTST30100CT, NTSB30100CT−1G, NTSJ30100CTG, NTSB30100CTG
100
100
TA = 150°C
TA = 25°C
I R , REVERSE CURRENT (mA)
i F , INSTANTANEOUS FORWARD CURRENT (AMPS)
TYPICAL CHARACTERISITICS
10
TA = 125°C
1.0
0.1
TA = 150°C
10
TA = 125°C
1.0
0.1
TA = 25°C
0.01
0.001
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
vF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
20
30
CJ, JUNCTION CAPACITANCE (pF)
10000
TJ = 25°C
1000
100
10
0.1
1
10
VR, REVERSE VOLTAGE (VOLTS)
100
25
20
15
SQUARE WAVE
10
5
0
0
20
35
30
25
SQUARE WAVE
20
15
10
5
0
20
40
60
80
100
120
TC, CASE TEMPERATURE (°C)
PF(AV), AVERAGE FORWARD
POWER DISSIPATION (W)
IF(AV), AVERAGE FORWARD CURRENT (A)
40
60
80
100
120
TC, CASE TEMPERATURE (°C)
30
RqJC = 1.3°C/W
45
40
0
RqJC = 1.3°C/W
dc
140
Figure 4. Current Derating per Leg
60
dc
100
30
Figure 3. Typical Junction Capacitance
55
50
90
Figure 2. Typical Reverse Current
IF(AV), AVERAGE FORWARD CURRENT (A)
Figure 1. Typical Forward Voltage
50
70
40
60
80
VR, REVERSE VOLTAGE (VOLTS)
25
IPK/IAV = 5
IPK/IAV = 20
20
SQUARE
WAVE
15
10
dc
5
0
140
IPK/IAV = 10
TA = 150°C
0
2
4
6
8
10
12
14
16
IF(AV), AVERAGE FORWARD CURRENT (A)
Figure 5. Current Derating
Figure 6. Forward Power Dissipation
http://onsemi.com
3
18
NTST30100CT, NTSB30100CT−1G, NTSJ30100CTG, NTSB30100CTG
TYPICAL CHARACTERISITICS
R(t), TYPICAL TRANSIENT THERMAL
RESISTANCE (°C/W)
10
1 50% Duty Cycle
20%
10%
0.1 5%
2%
1%
0.01
0.000001
Single Pulse
0.00001
0.0001
0.001
0.01
0.1
t, Pulse Time (sec)
1
10
100
1000
Figure 7. Typical Transient Thermal Response, Junction−to−Case for NTST30100CT and NTSB30100CT−1G
R(t), TYPICAL TRANSIENT THERMAL
RESISTANCE (°C/W)
10
50% Duty Cycle
1
20%
0.1
10%
5%
2%
1%
0.01
Single Pulse
0.001
0.000001
0.00001
0.0001
0.001
0.01
0.1
1
10
100
1000
100
1000
t, Pulse Time (sec)
R(t), TYPICAL TRANSIENT THERMAL
RESISTANCE (°C/W)
Figure 8. Typical Transient Thermal Response, Junction−to−Case for NTSJ30100CTG
1
50% Duty Cycle
0.1 20%
10%
5%
2%
0.01 1%
0.000001
Single Pulse
0.00001
0.0001
0.001
0.01
0.1
t, Pulse Time (sec)
1
10
Figure 9. Typical Transient Thermal Response, Junction−to−Case for NTSB30100CTG
http://onsemi.com
4
NTST30100CT, NTSB30100CT−1G, NTSJ30100CTG, NTSB30100CTG
ORDERING INFORMATION
Package
Shipping
NTST30100CTG
Device
TO−220AB
(Pb−Free)
50 Units / Rail
NTSB30100CT−1G
I2PAK
(Pb−Free)
50 Units / Rail
NTSJ30100CTG
TO−220FP
(Halide−Free)
50 Units / Rail
NTSB30100CTG
D2PAK
(Pb−Free)
50 Units / Rail
NTSB30100CTT4G
D2PAK
(Pb−Free)
800 / Tape & Reel
MARKING DIAGRAMS
AYWW
TS30100Cx
AKA
AYWW
TS30100CG
AKA
TO−220AB
TO−220FP
A
Y
WW
AKA
x
G
H
AYWW
TS30100CG
AKA
I2PAK
= Assembly Location
= Year
= Work Week
= Polarity Designator
= G or H
= Pb−Free Package
= Halide−Free Package
http://onsemi.com
5
AYWW
TS30100CG
AKA
D2PAK
NTST30100CT, NTSB30100CT−1G, NTSJ30100CTG, NTSB30100CTG
PACKAGE DIMENSIONS
TO−220
CASE 221A−09
ISSUE AF
−T−
B
F
SEATING
PLANE
C
T
S
4
DIM
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
T
U
V
Z
A
Q
U
1 2 3
H
K
Z
L
R
V
J
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL
BODY AND LEAD IRREGULARITIES ARE
ALLOWED.
G
D
N
INCHES
MIN
MAX
0.570
0.620
0.380
0.405
0.160
0.190
0.025
0.035
0.142
0.161
0.095
0.105
0.110
0.155
0.014
0.025
0.500
0.562
0.045
0.060
0.190
0.210
0.100
0.120
0.080
0.110
0.045
0.055
0.235
0.255
0.000
0.050
0.045
----0.080
STYLE 6:
PIN 1.
2.
3.
4.
MILLIMETERS
MIN
MAX
14.48
15.75
9.66
10.28
4.07
4.82
0.64
0.88
3.61
4.09
2.42
2.66
2.80
3.93
0.36
0.64
12.70
14.27
1.15
1.52
4.83
5.33
2.54
3.04
2.04
2.79
1.15
1.39
5.97
6.47
0.00
1.27
1.15
----2.04
ANODE
CATHODE
ANODE
CATHODE
I2PAK (TO−262)
CASE 418D
ISSUE D
C
E
V
−B−
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
4
A
W
1
2
DIM
A
B
C
D
E
F
G
H
J
K
S
V
W
3
F
−T−
SEATING
PLANE
K
S
J
G
D 3 PL
0.13 (0.005) M T B
H
M
http://onsemi.com
6
INCHES
MIN
MAX
0.335
0.380
0.380
0.406
0.160
0.185
0.026
0.035
0.045
0.055
0.122 REF
0.100 BSC
0.094
0.110
0.013
0.025
0.500
0.562
0.390 REF
0.045
0.070
0.522
0.551
MILLIMETERS
MIN
MAX
8.51
9.65
9.65
10.31
4.06
4.70
0.66
0.89
1.14
1.40
3.10 REF
2.54 BSC
2.39
2.79
0.33
0.64
12.70
14.27
9.90 REF
1.14
1.78
13.25
14.00
NTST30100CT, NTSB30100CT−1G, NTSJ30100CTG, NTSB30100CTG
PACKAGE DIMENSIONS
TO−220 FULLPACK, 3−LEAD
CASE 221AH
ISSUE B
A
E
B
P
E/2
0.14
M
B A
M
SEATING
PLANE
A
H1
A1
4
Q
D
C
NOTE 3
1 2 3
L
L1
3X
3X
b2
c
b
0.25
M
B A
M
C
A2
e
http://onsemi.com
7
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. CONTOUR UNCONTROLLED IN THIS AREA.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH
AND GATE PROTRUSIONS. MOLD FLASH AND GATE
PROTRUSIONS NOT TO EXCEED 0.13 PER SIDE. THESE
DIMENSIONS ARE TO BE MEASURED AT OUTERMOST
EXTREME OF THE PLASTIC BODY.
5. DIMENSION b2 DOES NOT INCLUDE DAMBAR
PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION
SHALL NOT EXCEED 2.00.
DIM
A
A1
A2
b
b2
c
D
E
e
H1
L
L1
P
Q
MILLIMETERS
MIN
MAX
4.30
4.70
2.50
2.90
2.50
2.70
0.54
0.84
1.10
1.40
0.49
0.79
14.70
15.30
9.70
10.30
2.54 BSC
6.70
7.10
12.70
14.73
--2.80
3.00
3.40
2.80
3.20
NTST30100CT, NTSB30100CT−1G, NTSJ30100CTG, NTSB30100CTG
PACKAGE DIMENSIONS
D2PAK 3
CASE 418B−04
ISSUE K
NOTES:
1. DIMENSIONING AND TOLERANCING
PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 418B−01 THRU 418B−03 OBSOLETE,
NEW STANDARD 418B−04.
C
E
V
W
−B−
4
1
2
A
S
3
−T−
SEATING
PLANE
K
J
G
D
W
H
3 PL
0.13 (0.005)
DIM
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
S
V
M
T B
VARIABLE
CONFIGURATION
ZONE
M
N
R
MILLIMETERS
MIN
MAX
8.64
9.65
9.65 10.29
4.06
4.83
0.51
0.89
1.14
1.40
7.87
8.89
2.54 BSC
2.03
2.79
0.46
0.64
2.29
2.79
1.32
1.83
7.11
8.13
5.00 REF
2.00 REF
0.99 REF
14.60 15.88
1.14
1.40
P
U
L
M
INCHES
MIN
MAX
0.340 0.380
0.380 0.405
0.160 0.190
0.020 0.035
0.045 0.055
0.310 0.350
0.100 BSC
0.080
0.110
0.018 0.025
0.090
0.110
0.052 0.072
0.280 0.320
0.197 REF
0.079 REF
0.039 REF
0.575 0.625
0.045 0.055
L
M
L
M
F
F
F
VIEW W−W
1
VIEW W−W
2
VIEW W−W
3
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
8
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NTST30100CT/D