ITS 4141D Smart High-Side Power Switch for Industrial Applications 1 Channel: 1 x 200mΩ Features Product Summary • Short circuit protection Overvoltage protection Vbb(AZ) 47 V • Current limitation Operating voltage Vbb(on) 12...45 V • Overload protection On-state resistance RON • Overvoltage protection Operating temperature Ta 200 mΩ -30...+85 °C (including load dump) • Undervoltage shutdown with autorestart and hysteresis • Switching inductive loads • Clamp of negative voltage at output with inductive loads PG-TO252-5-1 • CMOS compatible input • Thermal shutdown with restart • ESD - Protection • Loss of GND and loss of Vbb protection • Very low standby current • Reverse battery protection with external resistor • Improved electromagnetic compatibility (EMC) Application • All types of resistive, inductive and capacitive loads • µC compatible power switch for 12 V and 24 V DC industrial applications • Replaces electromechanical relays and discrete circuits General Description N channel vertical power FET with charge pump, ground referenced CMOS compatible input, monolithically integrated in Smart SIPMOS technology. Providing embedded protective functions. Page 1 2006-03-22 ITS 4141D Block Diagram + Vbb Voltage Overvoltage Current Gate source protection limit protection TAB/3 V Logic Voltage Charge pump sensor Level shifter Limit for unclamped ind. loads Rectifier 5 IN OUT 1 Temperature sensor R in ESD Load Logic miniPROFET® GND 4 Load GND Signal GND Pin Symbol Function 1 OUT Output to the load 2 NC not connected 3 Vbb connected with TAB 4 GND Logic ground 5 IN Input, activates the power switch in case of logic high signal TAB Vbb Positive power supply voltage Page 2 2006-03-22 ITS 4141D Maximum Ratings Symbol Parameter Value Unit at Tj = 25°C, unless otherwise specified Supply voltage Vbb -0,31)...48 Continuous input voltage2) VIN -10...Vbb Load current (Short - circuit current, see page 5) IL self limited Current through input pin (DC) I IN ±5 Reverse current through GND-pin 3) -I GND Junction temperature V A mA -0.5 A Tj internal limited °C Operating temperature Ta -30...+85 °C Storage temperature T stg -40 ... +105 °C Power dissipation 4) Ptot 1.4 W Inductive load switch-off energy dissipation 4)5) EAS 12 J single pulse Tj = 125 °C, IL = 0.5 A Load dump protection 5) VLoadDump6)= VA + VS V VLoaddump RI=2Ω, td=400ms, VIN= low or high, VA=13,5V RL = 47 Ω 83 kV Electrostatic discharge voltage (Human Body Model) VESD according to ANSI EOS/ESD - S5.1 - 1993 ESD STM5.1 - 1998 Input pin ±1 All other pins ±5 1defined by P tot 2At V > Vbb, the input current is not allowed to exceed ±5 mA. IN 3defined by P tot 4Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for V bb connection. PCB is vertical without blown air. 5not subject to production test, specified by design 6V Loaddump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 . Supply voltages higher than V bb(AZ) require an external current limit for the GND pin, e.g. with a 150Ω resistor in GND connection. A resistor for the protection of the input is integrated. Page 3 2006-03-22 ITS 4141D Electrical Characteristics Symbol Parameter at Tj = -40...125 °C, Vbb = 15...30 V unless otherwise specified Values Unit min. typ. max. Thermal Characteristics Thermal resistance @ 6 cm 2 cooling area 1) Rth(JA) - - 60 K/W Thermal resistance, junction - case RthJC - - 3 K/W Load Switching Capabilities and Characteristics On-state resistance RON mΩ Tj = 25 °C, IL = 0.5 A - 150 200 Tj = 125 °C - 270 320 0.7 - - Nominal load current2) IL(nom) A Device on PCB 1) Turn-on time to 90% VOUT ton RL = 47 Ω, VIN = 0 to 10 V Turn-off time to 10% VOUT 10 to 30% VOUT , 50 100 - 75 150 dV/dton RL = 47 Ω, Vbb = 15 V Slew rate off toff RL = 47 Ω, VIN = 10 to 0 V Slew rate on µs 70 to 40% VOUT , V/µs - 1 2 - 1 2 -dV/dtoff RL = 47 Ω, Vbb = 15 V 1Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for V bb connection. PCB is vertical without blown air. 2Nominal load current is limited by the current limitation ( see page 5 ) Page 4 2006-03-22 ITS 4141D Electrical Characteristics Symbol Parameter at Tj = -40...125 °C, Vbb = 15...30 V unless otherwise specified Values Unit min. typ. max. Operating Parameters Operating voltage Vbb(on) 12 - 45 Undervoltage shutdown Vbb(under) 7 - 10.5 Undervoltage restart Vbb(u rst) - - 11 Undervoltage hysteresis ∆Vbb(under) - 0.5 - V ∆Vbb(under) = Vbb(u rst) - Vbb(under) Standby current µA Ibb(off) Tj = -40...85 °C, V IN ≤ 1,2 V Tj = 125 °C1) - 10 25 - - 50 Operating current IGND - 1 1.6 mA Leakage output current (included in Ibb(off)) IL(off) - 3.5 10 µA VIN ≤ 1,2 V Protection Functions2) Initial peak short circuit current limit A IL(SCp) Tj = -40 °C, Vbb = 20 V, tm = 150 µs - - 2.1 Tj = 25 °C - 1.4 - Tj = 125 °C 0.7 - - - 1.1 - Repetitive short circuit current limit IL(SCr) Tj = Tjt (see timing diagrams) Output clamp (inductive load switch off) VON(CL) 47 52 - V at VOUT = Vbb - VON(CL), I bb = 4 mA Overvoltage protection 3) Vbb(AZ) 47 - - Thermal overload trip temperature 4) Tjt 135 - - °C Thermal hysteresis ∆Tjt - 10 - K Ibb = 4 mA 1higher current due temperature sensor 2Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation. 3see also V ON(CL) in circuit diagram 4 higher operating temperature at normal function available Page 5 2006-03-22 ITS 4141D Electrical Characteristics Parameter Symbol at Tj = -40...125 °C, Vbb = 15...30 V unless otherwise specified Values Unit min. typ. max. -102) - Vbb Input Continuous input voltage1) VIN Input turn-on threshold voltage VIN(T+) - - 3.0 Input turn-off threshold voltage VIN(T-) 1.82 - - Input threshold hysteresis ∆VIN(T) - 0.2 - Off state input current IIN(off) VIN ≤ 1,8 V V µA 20 - - - - 110 On state input current IIN(on) Input delay time at switch on Vbb td(Vbbon) 150 340 - µs Input resistance (see page 8) RI 1.5 3 5 kΩ Reverse Battery Reverse battery voltage3)2) V -Vbb RGND = 0 Ω - - 0.3 RGND = 150 Ω - - 45 IS - - 1 A -VON - 0.6 1.2 V Continuous reverse drain current2) Tj = 25 °C Drain-source diode voltage (VOUT > Vbb) IF = 1 A 1At V > Vbb, the input current is not allowed to exceed ±5 mA. IN 2not subject to production test, guaranted by design 3defined by P tot Page 6 2006-03-22 ITS 4141D EMC-Characteristics All EMC-Characteristics are based on limited number of sampels and no part of production test. Test Conditions: If not other specified the test circuitry is the minimal functional configuration without any external components for protection or filtering. Supply voltage: Vbb = 13.5V Load: RL = 220Ω Operation mode: PWM DC On/Off RGND DUT-Specific.: Temperature: Ta = 23 ±5°C ; Frequency: 100Hz / Duty Cycle: 50% Fast electrical transients Acc. ISO 7637 Test Pulse Test Level 1 2 3a 3b 41) 5 -200 V +200 V -200 V + 200 V -7 V 175 V Test Results On Off C C C C C E (70V) C C C C C E (70V) Pulse Cycle Time and Generator Impedance 500ms ; 10Ω 500ms ; 10Ω 100ms ; 50Ω 100ms ; 50Ω 0,01Ω 400ms ; 2Ω The test pulses are applied at Vbb Definition of functional status Class C E Content All functions of the device are performed as designed after exposure to disturbance. One or more function of a device does not perform as designed after exposure and can not be returned to proper operation without repairing or replacing the device. The value after the character shows the limit. Test circuit: P u ls e B a t. Vb b IN PROFET OUT GND R GND RL 1Supply voltage V = 12 V instead of 13,5 V. bb Page 7 2006-03-22 ITS 4141D Conducted Emission Acc. IEC 61967-4 (1Ω / 150Ω method) Typ. Vbb-Pin Emission at DC-On with 150 Ω-matching network 100 1 5 0 o h m C la s s 6 1 5 0 o h m C la s s 1 V B B , n o is e f lo o r VBB, ON 90 80 70 60 dBµV 50 1 5 0 Ω / 8 -H 40 30 20 1 5 0 Ω / 1 3 -N 10 0 -1 0 -2 0 0 ,1 1 10 100 1000 f / MHz Typ. Vbb -Pin Emission at PWM-Mode with 150 Ω-matching network 100 90 1 5 0 o h m C la s s 6 1 5 0 o h m C la s s 1 V B B , n o is e f lo o r VBB, PW M 80 70 60 dBµV 50 1 5 0 Ω / 8 -H 40 30 20 1 5 0 Ω / 1 3 -N 10 0 -1 0 -2 0 0 ,1 1 10 100 1000 f / MHz Test circuit: 150Ω-Network 5µH Vbb IN PROFET OUT 5µH GND R GND R For defined decoupling and high reproducibility a defined choke (5µH at 1 MHz) is inserted between supply and Vbb-pin. Page 8 2006-03-22 ITS 4141D Conducted Susceptibility Acc. 47A/658/CD IEC 62132-4 (Direct Power Injection) Direct Power Injection: Failure criteria: Forward Power CW Amplitude and frequency deviation max. 10% at Out Typ. Vbb-Pin Susceptibility at DC-On/Off 40 35 30 dBm 25 20 15 L im it D e v ic e : Load: O -M o d e : C o u p lin g P o in t : M o n it o r in g : M o d u la t io n : VBB, ON 10 VBB, OFF 5 BTS 4142 47 O hm s O N / O FF / PW M VBB O ut CW 0 1 10 100 1000 f / MHz Typ. Vbb -Pin Susceptibility at PWM-Mode 40 35 30 dBm 25 20 15 L im it D e v ic e : Load: O -M o d e : C o u p lin g P o in t : M o n it o r in g : M o d u la t io n : VBB, PW M 10 5 BTS 4142 47 O hm s ON / OFF / PW M VBB O ut CW 0 1 10 100 1000 f / MHz Test circuit: HF 5µH Vbb 150Ω IN PROFET OUT GND 6,8nF RGND 5µH RL 150Ω 6,8nF For defined decoupling and high reproducibility the same choke and the same 150Ω -matching network as for the emission measurement is used. Page 9 2006-03-22 ITS 4141D Terms Inductive and overvoltage output clamp + V bb Ibb V Z Vbb I IN IN V V IL PROFET VON ON OUT OUT GND IN V bb R GND GND I GND VOUT VON clamped to 47 V min. Input circuit (ESD protection) Overvoltage protection of logic part Vbb R IN + V bb I V I IN I Z2 L o g ic GND GND The use of ESD zener diodes as voltage clamp at DC conditions is not recommended R GND o p tio n a l S ig n a l G N D VZ2=V bb(AZ)=47V min., Reverse battery protection R I=3 kΩ typ., R GND=150Ω - Vbb IN R I O UT Pow er In v e rs e D io d e L o g ic G ND RGND o p tio n a l S ig n a l G N D R L Pow er G N D RGND=150Ω, RI=3kΩ typ., Temperature protection is not active during inverse current Page 10 2006-03-22 ITS 4141D GND disconnect Inductive Load switch-off energy dissipation E bb Vbb IN E AS OUT PROFET IN GND V bb V V GND IN ELoad Vbb PROFET OUT L = GND ZL { R EL ER L GND disconnect with GND pull up Energy stored in load inductance: EL = ½ * L * IL2 While demagnetizing load inductance, the enérgy dissipated in PROFET is E AS = E bb + EL - ER = VON(CL) * iL(t) dt, Vbb IN PROFET OUT GND V bb V IN with an approximate solution for RL > 0Ω: E AS = IL * R L IL * L ) * ( V b b + | V O U T ( C L )| ) * ln (1 + | V O U T ( C L )| 2 * RL V GND Vbb disconnect with charged inductive load Vbb high IN PROFET OUT GND V bb Page 11 2006-03-22 ITS 4141D Typ. transient thermal impedance Typ. transient thermal impedance ZthJA=f(tp) @ 6cm 2 heatsink area Z thJA=f(tp) @ min. footprint Parameter: D=tp/T Parameter: D=tp/T 10 2 K/W 10 2 D=0.5 K/W D=0.5 D=0.2 10 1 D=0.2 10 1 D=0.05 10 0 D=0.02 D=0.1 D=0.05 Z thJA ZthJA D=0.1 D=0.02 10 0 D=0.01 D=0.01 10 -1 10 -1 D=0 10 -2 -7 -6 -5 -4 -3 -2 -1 0 1 2 10 10 10 10 10 10 10 10 10 10 s 10 D=0 10 -2 -7 -6 -5 -4 -3 -2 -1 0 1 2 10 10 10 10 10 10 10 10 10 10 4 tp Typ. on-state resistance RON = f(Tj) ; Vbb = 15 V ; Vin = high RON = f(V bb); IL = 0.5A ; V in = high 300 300 mΩ RON mΩ RON 10 tp Typ. on-state resistance 200 125°C 200 150 150 100 100 50 50 0 -40 s -20 0 20 40 60 80 100 °C Tj 0 0 140 Page 12 25°C -40°C 5 10 15 20 25 30 35 40 V Vbb 50 2006-03-22 4 ITS 4141D Typ. turn on time Typ. turn off time ton = f(Tj ); R L = 47Ω toff = f(Tj); RL = 47Ω 100 120 µs µs 15...30V 30V 60 toff ton 15V 80 60 40 40 20 0 -40 20 -20 0 20 40 60 80 100 °C Tj 0 -40 140 -20 0 20 40 60 Typ. slew rate on Typ. slew rate off dV/dton = f(Tj ) ; RL = 47 Ω dV/dtoff = f(Tj); RL = 47 Ω 2 80 100 °C Tj 140 4 V/µs V/µs -dV dtoff dV dton 1.6 1.4 3 2.5 1.2 30V 1 2 0.8 1.5 15V 30V 0.6 1 0.4 15V 0.5 0.2 0 -40 -20 0 20 40 60 80 100 °C Tj 0 -40 140 Page 13 -20 0 20 40 60 80 100 °C Tj 140 2006-03-22 ITS 4141D Typ. initial peak short circuit current limit Typ. initial short circuit shutdown time IL(SCp) = f(Tj) ; Vbb = 20 V; tm = 150 µs toff(SC) = f(Tj,start) ; Vbb = 20V 2 1000 A ms 800 t off(SC) I L(SCp) 1.6 1.4 1.2 700 600 1 500 0.8 400 0.6 300 0.4 200 0.2 100 0 -40 -20 0 20 40 60 80 100 0 -40 140 °C Tj -20 0 20 40 60 80 100 °C Tj 140 Typ. initial peak short circuit current limit Typ. input current IL(SCp) = f(Vbb); tm = 150µs IIN(on/off) = f(Tj); V bb = 15 V; VIN = low/high VINlow ≤ 1,8V; VINhigh = 5V 60 A -40°C 1.5 25°C µA I IN I L(SCp) 2 1.25 40 on 30 off 125°C 1 0.75 20 0.5 10 0.25 0 0 5 10 15 20 25 30 35 40 V Vbb 0 -40 50 Page 14 -20 0 20 40 60 80 100 °C Tj 140 2006-03-22 ITS 4141D Typ. input current Typ. input threshold voltage IIN = f(VIN); Vbb =15 V VIN(th) = f(T j) ; V bb = 15 V -40°C 60 3 on 25°C 40 V VIN(th) IIN µA 125°C 2 30 1.5 20 1 10 0.5 0 0 2.5 5 7.5 10 12.5 15 V VIN 0 -40 20 off -20 0 20 40 60 80 100 °C Tj Typ. input threshold voltage Typ. standby current VIN(th) = f(Vbb) ; Tj = 25°C I bb(off) = f(T j) ; V bb = 32V ; VIN ≤ 1,2 V 3 140 22 µA V 18 2 Ibb(off) V IN(th) on off 16 14 12 1.5 10 8 1 6 4 0.5 2 0 0 10 20 30 0 -40 50 V Vbb Page 15 -20 0 20 40 60 80 100 °C Tj 140 2006-03-22 ITS 4141D Maximum allowable inductive switch-off Typ. leakage current energy, single pulse IL(off) = f(Tj) ; Vbb = 32V ; VIN ≤ 1,2 V EAS = f(IL ); Tjstart = 125°C 30 4 µA J IL(off) EAS 3 20 15 2.5 2 1.5 10 1 5 0.5 0 0 0.2 0.4 0.6 0.8 1 A IL 0 -40 1.4 -20 0 20 40 60 80 100 °C Tj 140 Typ. input delay time at switch on Vbb td(Vbbon) = f(Vbb) 400 td(Vbbon) µs 300 250 200 150 100 50 0 0 5 10 15 20 25 30 35 40 V Vbb 50 Page 16 2006-03-22 ITS 4141D Timing diagrams Figure 1a: Vbb turn on: Figure 2b: Switching a lamp IN IN Vbb V OUT IL IL t t d(Vbbon) t Figure 2a: Switching a resistive load, turn-on/off time and slew rate definition Figure 2c: Switching an inductive load IN IN V OUT 90% VOUT t on dV/dton 10% dV/ dtoff t off IL IL t t Page 17 2006-03-22 ITS 4141D Figure 3a: Turn on into short circuit, shut down by overtemperature, restart by cooling Figure 3b: Short circuit in on-state shut down by overtemperature, restart by cooling IN IN V OUT V OUT normal operation Output short to GND I L I L(SCp) I I Output short to GND L I L(SCr) L(SCr) t t Heating up of the chip may require several milliseconds, depending on external conditions. Figure 5: Undervoltage shutdown and restart Figure 4: Overtemperature: Reset if Tj < Tjt IN IN Vbb VOUT 10,5V Vout TJ t t t d(Vbbon) Page 18 t d(Vbbon) 2006-03-22 ITS 4141D Package and ordering code all dimensions in mm Sales code ITS 4141D Ordering code, SP000221235 2.3 +0.05 -0.10 A 1 ±0.1 0...0.15 0.5 +0.08 -0.04 5x0.6 ±0.1 1.14 4.56 0.9 +0.08 -0.04 0.51 min 0.15 max per side B 5.4 ±0.1 0.8 ±0.15 (4.17) 1 ±0.1 9.9 ±0.5 6.22 -0.2 6.5 +0.15 -0.10 0.1 0.25 M A B GPT09161 All metal surfaces tin plated, except area of cut. Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81669 München © Infineon Technologies AG 2001 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Page 19 2006-03-22