BTS 462 T Smart Power High-Side-Switch Features Product Summary 41 V · Overload protection Overvoltage protection Vbb(AZ) · Current limitation Operating voltage Vbb(on) · Short circuit protection On-state resistance RON 100 mW · Thermal shutdown with restart Nominal load current I L(ISO) 3.5 A · Overvoltage protection (including load dump) · Fast demagnetization of inductive loads · Reverse battery protection with external resistor · CMOS compatible input 5...34 V Loss of GND and loss of Vbb protection · ESD - Protection · · Very low standby current Application • All types of resistive, inductive and capacitive loads • µC compatible power switch for 12 V and 24 V DC applications • Replaces electromechanical relays and discrete circuits General Description N channel vertical power FET with charge pump, ground referenced CMOS compatible input, monolithically integrated in Smart SIPMOSâ technology. Fully protected by embedded protection functions. Page 1 2000-02-22 BTS 462 T Block Diagram + V bb Voltage source Overvoltage protection Current limit Gate protection V Logic OUT Limit for unclamped ind. loads Charge pump Level shifter Temperature sensor Rectifier IN ESD Load Logic miniPROFET GND Load GND Signal GND Pin Symbol Function 1 GND Logic ground 2 IN 3 Vbb Positive power supply voltage 4 NC not connected 5 OUT Output to the load TAB Vbb Positive power supply voltage Input, activates the power switch in case of logic high signal Page 2 2000-02-22 BTS 462 T Maximum Ratings at Tj = 25°C, unless otherwise specified Parameter Symbol Value Supply voltage Vbb 40 Supply voltage for full short circuit protection Vbb(SC) 32 Unit V T j = -40...+150 °C Continuous input voltage VIN -10 ... +16 Load current (Short - circuit current, see page 5) IL self limited Current through input pin (DC) I IN ±5 Operating temperature Tj -40 ...+150 Storage temperature T stg -55 ... +150 Power dissipation 1) Ptot 41.6 W Inductive load switch-off energy dissipation 1)2) EAS 4.4 J A mA °C single pulse, (see page 8) Tj =150 °C, Vbb = 13.5 V, IL = 1 A Load dump protection 2) VLoadDump3)= V A + V S RI=2W, t d=400ms, VIN= low or high, VA=13,5V V V/RDGGXPS RL = 13.5 W 75 Electrostatic discharge voltage (Human Body Model) VESD according to ANSI EOS/ESD - S5.1 - 1993 kV ESD STM5.1 - 1998 ±1 ±5 Input pin all other pins Thermal Characteristics junction - case: RthJC - - 3 K/W Thermal resistance @ min. footprint Rth(JA) - 80 - K/W Thermal resistance @ 6 cm 2 cooling area 1) Rth(JA) - 45 60 1 Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air. (see page 16) 2not tested, specified by design 3V Loaddump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 . Supply voltages higher than Vbb(AZ) require an external current limit for the GND pin, e.g. with a 150W resistor in GND connection. A resistor for the protection of the input is integrated. Page 3 2000-02-22 BTS 462 T Electrical Characteristics Symbol Parameter and Conditions DW7M &9 EE 9XQOHVVRWKHUZLVHVSHFLILHG Values min. typ. Unit max. Load Switching Capabilities and Characteristics On-state resistance mW RON T j = 25 °C, I L = 2 A, V bb = 9...40 V - 70 100 T j = 150 °C - 140 200 3.5 4.4 - A µs Nominal load current; Device on PCB 1) I L(ISO) T C = 85 °C, V ON = 0.5 V Turn-on time to 90% V OUT t on - 90 170 to 10% VOUT t off - 90 230 10 to 30% V OUT, dV/dt on - 0.8 1.7 70 to 40% V OUT, -dV/dtoff - 0.8 1.7 Operating voltage Vbb(on) 5 - 34 Undervoltage shutdown of charge pump Vbb(under) Tj = -40...+85 °C - - 4 Tj = 150 °C - - 5.5 - 4 5.5 RL = 47 W Turn-off time RL = 47 W Slew rate on RL = 47 W Slew rate off RL = 47 W V/µs Operating Parameters Undervoltage restart of charge pump Vbb(u cp) Standby current Ibb(off) µA Tj = -40...+85 °C, VIN = 0 V - - 10 Tj = 150 °C2) , VIN = 0 V - - 15 IL(off) - - 5 IGND - 0.5 1.3 Leakage output current (included in Ibb(off)) V VIN = 0 V Operating current mA VIN = 5 V 1 Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air. (see page 16) 2higher current due temperature sensor Page 4 2000-02-22 BTS 462 T Electrical Characteristics Symbol Parameter and Conditions DW7M &9 EE 9XQOHVVRWKHUZLVHVSHFLILHG Values min. typ. Unit max. Protection Functions Initial peak short circuit current limit (pin 3 to 5) A I L(SCp) T j = -40 °C, V bb = 20 V, tm = 150 µs - - 20 T j = 25 °C - 14 - T j = 150 °C 7 - - - 10 - VON(CL) 41 47 - Vbb(AZ) 41 - - Thermal overload trip temperature T jt 150 - - °C Thermal hysteresis DTjt - 10 - K Reverse battery 2) -Vbb - - 32 V Drain-source diode voltage ( V OUT > V bb) -VON - 600 - Repetitive short circuit current limit I L(SCr) T j = Tjt (see timing diagrams) Output clamp (inductive load switch off) V at V OUT = V bb - V ON(CL), I bb = 4 mA Overvoltage protection 1) I bb = 4 mA Reverse Battery mV 1 see also V ON(CL) in circuit diagram on page 7 2Requires a 150 W resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Power dissipation is higher compared to normal operating conditions due to the voltage drop across the drain-source diode. The temperature protection is not active during reverse current operation! Input current has to be limited (see max. ratings page 3). Page 5 2000-02-22 BTS 462 T Parameter and Conditions Symbol DW7M &9 EE 9XQOHVVRWKHUZLVHVSHFLILHG Values Unit min. typ. max. VIN(T+) - - 2.2 VIN(T-) 0.8 - - Input threshold hysteresis DV IN(T) - 0.3 - Off state input current (see page 12) I IN(off) 1 - 25 I IN(on) 3 - 25 1.5 3.5 5 Input Input turn-on threshold voltage V (see page 12) Input turn-off threshold voltage (see page 12) µA VIN = 0.7 V On state input current (see page 12) VIN = 5 V Input resistance (see page 7) RI Page 6 kW 2000-02-22 BTS 462 T Terms Inductive and overvoltage output clamp Ibb + V bb V Z Vbb V I IN IL IN PROFET ON VON OUT OUT V GND GND IN V bb R IGND VOUT GND VON clamped to 47V typ. Overvoltage protection of logic part Input circuit (ESD protection) R IN + V bb I V ESD- ZD I I IN I Z2 RI L o gic GND V 7KHXVHRI(6']HQHUGLRGHVDVYROWDJHFODPS DW'&FRQGLWLRQVLVQRWUHFRPPHQGHG Z1 GND R GN D S ignal GND VZ1 =6.1V typ., VZ2=Vbb(AZ)=47V typ., RI=3.5 kW typ., RGND=150W Reverse battery protection - V bb Logic IN RI OUT Power Inverse Diode GND RL R GND Signal GND Power GND RGND=150W, RI=3.5kW typ., Temperature protection is not active during inverse current Page 7 2000-02-22 BTS 462 T Vbb disconnect with charged inductive load GND disconnect Vbb Vbb IN high OUT PROFET IN GND V bb V PROFET OUT GND V GND IN V bb GND disconnect with GND pull up Inductive Load switch-off energy dissipation Vbb IN PROFET OUT E bb E AS GND E Load Vbb V bb V IN V GND IN PROFET OUT L = GND ZL ^ R EL ER L Energy stored in load inductance: EL = ½ * L * IL2 While demagnetizing load inductance, the enérgy dissipated in PROFET is E AS = Ebb + EL - ER = ò VON(CL) * iL(t) dt, with an approximate solution for RL > 0W: E AS = Page 8 IL * R L IL * L ) * ( V b b + | V O U T ( C L )| ) * ln (1 + | V O U T ( C L )| 2 * RL 2000-02-22 BTS 462 T Typ. transient thermal impedance Typ. transient thermal impedance Z thJA=f(tp) @ 6cm 2 heatsink area ZthJA=f(tp) @ min. footprint Parameter: D=tp/T Parameter: D=tp/T 10 2 10 2 K/W D=0.5 K/W D=0.5 D=0.2 10 1 D=0.2 10 1 D=0.05 10 0 D=0.05 ZthJA ZthJA D=0.1 D=0.02 D=0.1 D=0.02 10 0 D=0.01 D=0.01 10 -1 10 -1 D=0 10 -2 -7 -6 -5 -4 -3 -2 -1 0 1 2 10 10 10 10 10 10 10 10 10 10 s 10 D=0 10 -2 -7 -6 -5 -4 -3 -2 -1 0 1 2 10 10 10 10 10 10 10 10 10 10 4 tp 10 tp Typ. on-state resistance Typ. on-state resistance RON = f(Tj) ; Vbb = 13,5V ; V in = high RON = f(Vbb ); IL = 0.5A ; Vin = high 200 160 mW mW 150 RON 120 RON s 100 150°C 125 80 100 60 75 40 50 20 25 0 -40 -20 0 20 40 60 80 100 120 °C 160 Tj Page 9 0 0 25°C -40°C 5 10 15 20 25 30 V Vbb 40 2000-02-22 4 BTS 462 T Typ. turn off time Typ. turn on time toff = f(Tj); RL = 47W ton = f(Tj ); R L = 47W 160 160 32V µs µs 9V 9V 120 120 t off ton 13.5V 100 100 32V 80 80 60 60 40 40 20 20 0 -40 -20 0 20 40 60 80 100 120 0 -40 -20 °C 160 0 20 40 60 80 100 120 Tj Tj Typ. slew rate on Typ. slew rate off dV/dton = f(Tj ) ; RL = 47 W dV/dtoff = f(Tj); RL = 47 W 2.0 2.0 V/µs V/µs 1.6 -dV dtoff 1.6 dV dton °C 160 1.4 1.4 1.2 1.2 1.0 1.0 0.8 32V 0.8 32V 0.6 0.6 13.5V 0.4 13.5V 0.4 9V 9V 0.2 0.0 -40 -20 0.2 0 20 40 60 80 100 120 0.0 -40 -20 °C 160 Tj 0 20 40 60 80 100 120 °C 160 Tj Page 10 2000-02-22 BTS 462 T Typ. standby current Typ. leakage current Ibb(off) = f(Tj ) ; Vbb = 32V ; VIN = low IL(off) = f(Tj) ; Vbb = 32V ; VIN = low 2.0 6 µA µA IL(off) Ibb(off) 1.6 4 1.4 1.2 1.0 3 0.8 2 0.6 0.4 1 0.2 0 -40 -20 0 20 40 60 80 100 120 0.0 -40 -20 °C 160 0 20 40 60 80 100 120 Tj °C 160 Tj Typ. initial peak short circuit current limit Typ. initial short circuit shutdown time IL(SCp) = f(Tj) ; Vbb = 20V toff(SC) = f(Tj,start ) ; Vbb = 20V 18 3.0 A ms toff(SC) IL(SCp) 14 12 2.0 10 1.5 8 6 1.0 4 0.5 2 0 -40 -20 0 20 40 60 80 100 120 0.0 -40 -20 °C 160 Tj 0 20 40 60 80 100 120 °C 160 Tj Page 11 2000-02-22 BTS 462 T Typ. input current Typ. input current I IN(on/off) = f(Tj); V bb = 13,5V; VIN = low/high IIN = f(VIN); Vbb = 13.5V VINlow £ 0,7V; V INhigh = 5V 200 14 µA µA 160 150°C 10 I IN I IN 140 on 120 -40...25°C 8 100 6 80 off 60 4 40 2 0 -40 -20 20 0 20 40 60 80 100 120 0 0 °C 160 2 4 8 V VIN Tj Typ. input threshold voltage Typ. input threshold voltage VIN(th) = f(Tj ) ; Vbb = 13,5V VIN(th) = f(Vbb) ; Tj = 25°C 2.0 2.0 V V on on 1.4 off 1.2 1.6 VIN(th) VIN(th) 1.6 1.4 1.2 off 1.0 1.0 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 -40 -20 0 20 40 60 80 100 120 0.0 5 °C 160 Tj 10 15 20 25 35 V Vbb Page 12 2000-02-22 BTS 462 T Maximum allowable load inductance Maximum allowable inductive switch-off for a single switch off energy, single pulse L = f(I L); T jstart=150°C, V bb=13.5V, R L=0W EAS = f(IL ); Tjstart = 150°C, Vbb = 13,5V 5000 5000 mJ 4000 4000 3500 3500 EAS L mH 3000 3000 2500 2500 2000 2000 1500 1500 1000 1000 500 500 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 A IL 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0 Page 13 A IL 5.0 2000-02-22 BTS 462 T Timing diagrams Figure 2b: Switching a lamp, Figure 1a: Vbb turn on: IN IN OUT V bb I V L OUT t t Figure 2a: Switching a resistive load, turn-on/off time and slew rate definition Figure 2c: Switching an inductive load IN IN V V OUT OUT 90% t on d V /d to n d V /d to f f t o ff 10% I IL L t t Page 14 2000-02-22 BTS 462 T Figure 5: Undervoltage restart of charge pump Figure 3a: Turn on into short circuit, shut down by overtemperature, restart by cooling Von IN t I L Vbb( ucp) I L(SCp) I Vbb( under ) L(SCr) Vbb tm t off(SC) t +HDWLQJXSRIWKHFKLSPD\UHTXLUHVHYHUDOPLOOLVHFRQGVGHSHQGLQJ RQH[WHUQDOFRQGLWLRQV Figure 4: Overtemperature: Reset if Tj < T jt IN V OUT T J t Page 15 2000-02-22 BTS 462 T Package and ordering code all dimensions in mm Ordering code: Q67060-S7402 2.3 +0.05 -0.10 A 0.9 +0.08 -0.04 1 ±0.1 0...0.15 0.51 min 0.15 max per side B 5.4 ±0.1 0.8 ±0.15 (4.17) 1 ±0.1 9.9 ±0.5 6.22 -0.2 6.5 +0.15 -0.10 0.5 +0.08 -0.04 5x0.6 ±0.1 1.14 4.56 0.1 0.25 M A B GPT09161 All metal surfaces tin plated, except area of cut. Printed circuit board (FR4, 1.5mm thick, one layer 70µm, 6cm 2 active heatsink area ) as a reference for max. power dissipation Ptot nominal load current IL(nom) and thermal resistance R thja Published by Infineon Technologies AG, Bereichs Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Page 16 2000-02-22