BSP 752 R Smart Power High-Side-Switch Features Product Summary 62 V · Overload protection Overvoltage protection Vbb(AZ) · Current limitation Operating voltage Vbb(on) · Short circuit protection On-state resistance RON 200 mW · Thermal shutdown with restart Nominal load current I L(nom) 1.3 A · Overvoltage protection (including load dump) · Fast demagnetization of inductive loads · Reverse battery protection with external resistor · Open drain diagnostic output for overtemperature 6...52 V and short circuit · Open load detection in OFF - State with external resistor · CMOS compatible input Loss of GND and loss of Vbb protection · ESD - Protection · · Very low standby current Application • All types of resistive, inductive and capacitive loads • µC compatible power switch for 12 V, 24 V and 42 V DC applications • Replaces electromechanical relays and discrete circuits General Description N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically integrated in Smart SIPMOS â technology. Fully protected by embedded protection functions. Page 1 2000-03-07 BSP 752 R Block Diagram + V bb Voltage Overvoltage Current Gate source protection limit protection V Logic OUT Limit for unclamped ind. loads Charge pump Level shifter Temperature sensor Rectifier IN ESD Load Logic ST miniPROFET GND Load GND Signal GND Pin Symbol Function 1 GND Logic ground 2 IN 3 OUT Output to the load 4 ST Diagnostic feedback 5 Vbb Positive power supply voltage 6 Vbb Positive power supply voltage 7 Vbb Positive power supply voltage 8 Vbb Positive power supply voltage Input, activates the power switch in case of logic high signal Page 2 2000-03-07 BSP 752 R Maximum Ratings at Tj = 25°C, unless otherwise specified Parameter Symbol Value Supply voltage Vbb 52 Supply voltage for full short circuit protection Vbb(SC) 50 Continuous input voltage VIN -10 ... +16 Load current (Short - circuit current, see page 5) IL self limited Current through input pin (DC) IIN Operating temperature Tj -40 ...+150 Storage temperature Tstg -55 ... +150 Power dissipation 1) Ptot 1.5 W Inductive load switch-off energy dissipation 1)2) EAS 125 mJ ± Unit V A mA 5 °C single pulse, (see page 9 ) Tj =150 °C, I L = 1 A Load dump protection 2) VLoadDump3)= VA + V S V V/RDGGXPS RI=2W, t d=400ms, VIN= low or high, VA=13,5V RL = 13.5 W 73.5 RL = 27 W 83.5 Electrostatic discharge voltage (Human Body Model) VESD according to ANSI EOS/ESD - S5.1 - 1993 kV ESD STM5.1 - 1998 Input pin ± 1 all other pins ± 5 Thermal Characteristics Thermal resistance @ min. footprint Rth(JA) - 95 - Thermal resistance @ 6 cm 2 cooling area 1) Rth(JA) - 70 83 K/W 1 Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air. (see page 17) 2not tested, specified by design 3V Loaddump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 . Supply voltages higher than Vbb(AZ) require an external current limit for the GND pin, e.g. with a 150W resistor in GND connection. A resistor for the protection of the input is integrated. Page 3 2000-03-07 BSP 752 R Electrical Characteristics Parameter and Conditions Symbol DW7M &9EE 9XQOHVVRWKHUZLVHVSHFLILHG Values min. typ. Unit max. Load Switching Capabilities and Characteristics On-state resistance RON mW Tj = 25 °C, IL = 1 A, Vbb = 9...52 V - 150 200 Tj = 150 °C - 270 380 1.3 1.7 - A µs Nominal load current; Device on PCB 1) TC = 85 °C, Tj £ IL(nom) 150 °C Turn-on time to 90% VOUT ton - 80 180 to 10% VOUT toff - 80 200 dV/dton - 0.7 2 -dV/dtoff - 0.9 2 Operating voltage Vbb(on) 6 - 52 Undervoltage shutdown of charge pump Vbb(under) Tj = -40...+85 °C - - 4 Tj = 150 °C - - 5.5 - 4 5.5 RL = 47 W Turn-off time RL = 47 W Slew rate on 10 to 30% VOUT , V/µs RL = 47 W, Vbb = 13.5 V Slew rate off 70 to 40% VOUT , RL = 47 W, Vbb = 13.5 V Operating Parameters Undervoltage restart of charge pump Vbb(u cp) Standby current I bb(off) µA Tj = -40...+85 °C, V IN = low - - 15 Tj = +150 °C2), V IN = low - - 18 I L(off) - - 5 I GND - 0.8 2 Leakage output current (included in Ibb(off)) V VIN = low Operating current mA VIN = high 1 Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air. (see page 17) 2higher current due temperature sensor Page 4 2000-03-07 BSP 752 R Electrical Characteristics Parameter and Conditions Symbol DW7M &9 EE 9XQOHVVRWKHUZLVHVSHFLILHG Values min. typ. Unit max. Protection Functions Initial peak short circuit current limit (pin 5 to 3) A IL(SCp) T j = -40 °C, Vbb = 20 V, tm = 150 µs - - 9 T j = 25 °C - 6.5 - T j = 150 °C 4 - - T j = -40...+150 °C, V bb > 40 V , ( see page 12 ) - 5 1) - Vbb < 40 V - 6 - Vbb > 40 V - 4.5 - VON(CL) 59 63 - Vbb(AZ) 62 - - Thermal overload trip temperature Tjt 150 - - °C Thermal hysteresis D Tjt - 10 - K Reverse battery 3) -Vbb - - 52 V Drain-source diode voltage (VOUT > Vbb) -VON - 600 - Repetitive short circuit current limit IL(SCr) T j = Tjt (see timing diagrams) Output clamp (inductive load switch off) V at V OUT = V bb - V ON(CL), I bb = 4 mA Overvoltage protection 2) I bb = 4 mA Reverse Battery mV T j = 150 °C 1not tested, specified by design 2 see also VON(CL) in circuit diagram on page 8 3Requires a 150 W resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Power dissipation is higher compared to normal operating conditions due to the voltage drop across the drain-source diode. The temperature protection is not active during reverse current operation! Input current has to be limited (see max. ratings page 3). Page 5 2000-03-07 BSP 752 R Electrical Characteristics Parameter Symbol DW7M &9 EE 9XQOHVVRWKHUZLVHVSHFLILHG Values Unit min. typ. max. Input and Status feedback Input turn-on threshold voltage VIN(T+) - - 2.2 Input turn-off threshold voltage VIN(T-) 0.8 - - Input threshold hysteresis D - 0.4 - Off state input current IIN(off) 1 - 25 IIN(on) 3 - 25 5.4 6.1 - T j = -40...+25 °C, IST = 1.6 mA - - 0.4 T j = 150 °C, I ST = 1.6 mA - - 0.6 td(ST+) - 120 160 Status invalid after negative input slope 1) td(ST-) - 250 400 Input resistance (see page 8) RI 2 3.5 5 kW Short circuit detection voltage VOUT(SC) - 2.8 - V Open load detection voltage 2) VOUT(OL) - 3 4 Internal output pull down3) RO - 200 - VIN(T) V µA VIN = 0.7 V On state input current VIN = 5 V Status output (open drain), Zener limit voltage VST(high) V I ST = 1.6 mA Status output (open drain), ST low voltage VST(low) Status invalid after positive input slope 1) µs Vbb = 20 V Diagnostic Characteristics kW ( see page 9 and 14 ) VOUT(OL) = 4 V 1no delay time after overtemperature switch off and short circuit in on-state 2External pull up resistor required for open load detection in off state. 3not tested, specified by design Page 6 2000-03-07 BSP 752 R Input Output level level Normal L L H operation H H H Short circuit L L H to GND H L* L Short circuit to L H L Vbb (in off-state) H H H Overload L L H H H ** H L L H H L L Open Load in L Z H (L 1)) off-state H H H Overtemperature Status *) Out ="L": VOUT < 2.8V typ. **) Out ="H": VOUT > 2.8V typ. Z = high impedance, potential depends on external circuit 1with external resistor between V and OUT bb Page 7 2000-03-07 BSP 752 R Terms Inductive and overvoltage output clamp Ibb + V bb V I IN IN V IL PROFET I ST V IN ON VON OUT OUT ST V Z Vbb GND GND V ST I GND bb R GND V OUT VON clamped to 59V min. Overvoltage protection of logic part Input circuit (ESD protection) R IN I ESD- ZD I I I GND 7KHXVHRI(6']HQHUGLRGHVDVYROWDJHFODPS DW'&FRQGLWLRQVLVQRWUHFRPPHQGHG VZ1 =6.1V typ., VZ2=Vbb(AZ)=62V min., RI=3.5 kW typ., RGND=150W Reverse battery protection Status output ± 5V R - V bb Logic ST R IN +5V I ST RST(ON) OUT Power Inverse Diode ST GND R GND Signal GND RL Power GND GND RGND=150W, RI=3.5kW typ., Temperature protection is not active during inverse current Page 8 ESDZD 2000-03-07 BSP 752 R Open-load detection Vbb disconnect with charged inductive load OFF-state diagnostic condition: V OUT > 3V typ.; IN=low R EXT high IN Vbb OFF PROFET V OUT OUT ST GND Open load detection Logic unit R O V Signal GN D bb GND disconnect IN Inductive Load switch-off energy dissipation Vbb E bb OUT PROFET E AS ST E Load GND V bb V IN V IN V GND ST Vbb PROFET = OUT L ST GND ZL GND disconnect with GND pull up ^ R IN Vbb PROFET OUT ST GND V bb V V IN ST V GND EL ER L Energy stored in load inductance: EL = ½ * L * IL2 While demagnetizing load inductance, the enérgy dissipated in PROFET is E AS = Ebb + EL - ER = ò VON(CL) * iL(t) dt, with an approximate solution for RL > 0W: E AS = Page 9 IL * R L IL * L ) * ( V b b + | V O U T ( C L )| ) * ln (1 + | V O U T ( C L )| 2 * RL 2000-03-07 BSP 752 R Typ. transient thermal impedance Typ. transient thermal impedance Z thJA=f(tp) @ 6cm 2 heatsink area ZthJA=f(tp) @ min. footprint Parameter: D=tp/T Parameter: D=tp/T 10 2 10 2 D=0.5 K/W D=0.5 K/W D=0.2 D=0.2 10 1 D=0.1 10 1 D=0.05 ZthJA ZthJA D=0.05 D=0.02 10 0 D=0.1 D=0.02 10 0 D=0.01 D=0.01 10 -1 D=0 10 -1 D=0 10 -2 -7 -6 -5 -4 -3 -2 -1 0 1 2 10 10 10 10 10 10 10 10 10 10 s 10 10 -2 -7 -6 -5 -4 -3 -2 -1 0 1 2 10 10 10 10 10 10 10 10 10 10 4 tp 10 V Vbb 50 tp Typ. on-state resistance Typ. on-state resistance RON = f(Tj) ; Vbb = 13,5V ; V in = high RON = f(Vbb ); IL = 1 A ; Vin = high 300 400 mW mW 150°C 300 200 RON RON s 150 250 200 25°C 150 100 -40°C 100 50 50 0 -40 -20 0 20 40 60 80 100 120 °C Tj 0 0 160 Page 10 5 10 15 20 25 30 35 40 2000-03-07 4 BSP 752 R Typ. turn off time Typ. turn on time toff = f(Tj); RL = 47W ton = f(Tj ); R L = 47W 160 160 µs µs 9V 120 13.5V 100 t off ton 120 100 9...42V 80 80 42V 60 60 40 40 20 20 0 -40 -20 0 20 40 60 80 100 120 °C Tj 0 -40 -20 160 Typ. slew rate on 0 20 40 60 80 100 120 °C Tj 160 Typ. slew rate off dV/dton = f(Tj ) ; RL = 47 W dV/dtoff = f(Tj); RL = 47 W 2.0 3.5 V/µs V/µs -dV dtoff dV dton 1.6 1.4 1.2 2.5 2.0 1.0 42V 1.5 0.8 42V 0.6 1.0 13.5V 0.4 9V 0.5 160 0.0 -40 -20 13.5V 9V 0.2 0.0 -40 -20 0 20 40 60 80 100 120 °C Tj Page 11 0 20 40 60 80 100 120 °C Tj 160 2000-03-07 BSP 752 R Typ. standby current Typ. leakage current Ibb(off) = f(Tj ) ; Vbb = 42V ; VIN = low IL(off) = f(Tj) ; Vbb = 42V ; VIN = low 10 2.5 µA IL(off) Ibb(off) µA 6 1.5 4 1.0 2 0.5 0 -40 -20 0 20 40 60 80 100 120 °C Tj 0.0 -40 -20 160 0 20 40 60 80 100 120 °C Tj 160 Typ. initial peak short circuit current limit Typ. initial short circuit shutdown time IL(SCp) = f(Vbb) toff(SC) = f(Tj,start ) ; Vbb = 20V 4.0 10 ms A 3.0 toff(SC) IL(SCp) -40°C 25°C 150°C 6 2.5 2.0 4 1.5 1.0 2 0.5 0 0 10 20 30 40 0.0 -40 -20 60 V Vbb Page 12 0 20 40 60 80 100 120 °C Tj 160 2000-03-07 BSP 752 R Typ. input current Typ. input current IIN(on/off) = f(Tj); V bb = 13,5V; VIN = low/high IIN = f(VIN); Vbb = 13.5V VINlow £ 0,7V; VINhigh = 5V 50 12 µA µA -40...25°C 150°C I IN I IN 8 30 on 6 20 off 4 10 2 0 -40 -20 0 20 40 60 80 100 120 °C Tj 0 0 160 1 2 3 4 5 Typ. input threshold voltage Typ. input threshold voltage VIN(th) = f(Tj ) ; Vbb = 13,5V VIN(th) = f(Vbb) ; Tj = 25°C 2.0 8 V on on 1.6 1.6 off 1.4 1.2 VIN(th) VIN(th) V VIN 2.0 V 1.4 1.0 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 20 40 60 80 100 120 °C Tj 0.0 0 160 off 1.2 1.0 0.0 -40 -20 6 10 20 30 50 V Vbb Page 13 2000-03-07 BSP 752 R Maximum allowable load inductance Typ. status delay time for a single switch off td(ST) = f(Vbb); Tj = 25°C L = f(I L); T jstart=150°C, RL=0W 2000 300 µs mH td(ST+/-) 1400 L td(ST-) 250 1600 1200 225 200 175 1000 150 800 125 td(ST+) 100 600 75 42V 400 13,5V 50 200 0 0.0 25 0.2 0.5 0.8 1.0 0 0 1.5 A 10 20 30 50 V IL Vbb Maximum allowable inductive switch-off Typ. internal output pull down energy, single pulse RO = f(Vbb) EAS = f(IL ); Tjstart = 150°C, Vbb = 13,5V 1800 800 kW mJ 600 1200 RO EAS 1400 150°C 500 1000 400 800 300 25°C 600 200 400 -40°C 100 200 0 0.0 0.2 0.5 0.8 1.0 0 0 1.5 A IL 10 20 30 50 V Vbb Page 14 2000-03-07 BSP 752 R Timing diagrams Figure 2b: Switching a lamp, Figure 1a: Vbb turn on: IN IN Vbb ST I V L OUT IL ST t Figure 2a: Switching a resistive load, turn-on/off time and slew rate definition Figure 2c: Switching an inductive load IN V IN OUT ST 90% t on dV/ dton dV/ dtoff t VOUT off 10% IL t IL ST Page 15 2000-03-07 BSP 752 R Figure 3a: Turn on into short circuit, shut down by overtemperature, restart by cooling Figure 3b: Short circuit in on-state shut down by overtemperature, restart by cooling IN IN V OUT V OUT Output IL I short L( SCp ) to GND I n o rm a l o p e r a tio n I L( SCr ) O u tp u t s h o r t to G N D L I L (S C r) tm ST ST t t t d(ST+) +HDWLQJXSRIWKHFKLSPD\UHTXLUHVHYHUDOPLOOLVHFRQGVGHSHQGLQJ RQH[WHUQDOFRQGLWLRQV Figure 5: Undervoltage restart of charge pump Figure 4: Overtemperature: Reset if Tj < T jt Von IN ST Vbb( ucp) IL Vbb( under ) Vbb TJ t Page 16 2000-03-07 BSP 752 R Package and ordering code all dimensions in mm Ordering code: Q67060-S7306 Printed circuit board (FR4, 1.5mm thick, one layer 70µm, 6cm 2 active heatsink area ) as a reference for max. power dissipation Ptot nominal load current IL(nom) and thermal resistance R thja Published by Infineon Technologies AG, Bereichs Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Page 17 2000-03-07