BSP 742 T Smart Power High-Side-Switch Features Product Summary · Overload protection Overvoltage protection Vbb(AZ) 41 V · Current limitation Operating voltage Vbb(on) · Short circuit protection On-state resistance RON 350 mW · Thermal shutdown with restart Nominal load current I L(nom) 0.8 A · Overvoltage protection (including load dump) · Fast demagnetization of inductive loads · Reverse battery protection with external resistor · CMOS compatible input 5...34 V Loss of GND and loss of Vbb protection · ESD - Protection · · Very low standby current Application • All types of resistive, inductive and capacitive loads • µC compatible power switch for 12 V and 24 V DC applications • Replaces electromechanical relays and discrete circuits General Description N channel vertical power FET with charge pump, ground referenced CMOS compatible input, monolithically integrated in Smart SIPMOS â technology. Fully protected by embedded protection functions. Page 1 2000-06-06 BSP 742 T Block Diagram + V bb Voltage source Overvoltage protection Current limit Gate protection V Logic OUT Limit for unclamped ind. loads Charge pump Level shifter Temperature sensor Rectifier IN ESD Load Logic miniPROFET GND Load GND Signal GND Pin Symbol Function 1 GND Logic ground 2 IN 3 OUT Output to the load 4 NC not connected 5 Vbb Positive power supply voltage 6 Vbb Positive power supply voltage 7 Vbb Positive power supply voltage 8 Vbb Positive power supply voltage Input, activates the power switch in case of logic high signal Page 2 2000-06-06 BSP 742 T Maximum Ratings at Tj = 25°C, unless otherwise specified Parameter Symbol Value Supply voltage Vbb 40 Supply voltage for full short circuit protection Vbb(SC) 30 Unit V T j = -40...+150 °C Continuous input voltage VIN -10 ... +16 Load current (Short - circuit current, see page 5) IL self limited Current through input pin (DC) IIN Operating temperature Tj -40 ...+150 Storage temperature Tstg -55 ... +150 Power dissipation 1) Ptot 1.5 W Inductive load switch-off energy dissipation 1)2) EAS 100 mJ ± A mA 5 °C single pulse, (see page 8) Tj =150 °C, Vbb = 13.5 V, IL = 0.5 A Load dump protection 2) VLoadDump3)= VA + V S V V/RDGGXPS RI=2W, t d=400ms, VIN= low or high, VA=13,5V RL = 27 W 40 RL = 45 W 60 Electrostatic discharge voltage (Human Body Model) VESD according to ANSI EOS/ESD - S5.1 - 1993 kV ESD STM5.1 - 1998 Input pin ± 1 all other pins ± 5 Thermal Characteristics Thermal resistance @ min. footprint Rth(JA) - 95 - Thermal resistance @ 6 cm 2 cooling area 1) Rth(JA) - 70 83 K/W 1 Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air. (see page 16) 2not tested, specified by design 3V Loaddump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 . Supply voltages higher than Vbb(AZ) require an external current limit for the GND pin, e.g. with a 150W resistor in GND connection. A resistor for the protection of the input is integrated. Page 3 2000-06-06 BSP 742 T Electrical Characteristics Parameter and Conditions Symbol DW7M &9EE 9XQOHVVRWKHUZLVHVSHFLILHG Values min. typ. Unit max. Load Switching Capabilities and Characteristics On-state resistance RON mW Tj = 25 °C, IL = 0.5 A, Vbb = 9...40 V - 260 350 Tj = 150 °C - 450 700 0.8 1.1 - A µs Nominal load current; Device on PCB 1) TC = 85 °C, Tj £ IL(nom) 150 °C Turn-on time to 90% VOUT ton - - 140 to 10% VOUT toff - - 170 10 to 30% VOUT , dV/dton - - 2 70 to 40% VOUT , -dV/dtoff - - 2 Operating voltage Vbb(on) 5 - 34 Undervoltage shutdown of charge pump Vbb(under) - - 5 Undervoltage restart of charge pump Vbb(u cp) - - 5.5 Standby current I bb(off) RL = 47 W Turn-off time RL = 47 W Slew rate on V/µs RL = 47 W Slew rate off RL = 47 W Operating Parameters µA Tj = -40...+85 °C, V IN = 0 V - - 12 Tj = 150 °C2) , VIN = 0 V - - 17 I L(off) - - 5 I GND - - 1 Leakage output current (included in Ibb(off)) V VIN = 0 V Operating current mA VIN = 5 V 1 Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air. (see page 16) 2higher current due temperature sensor Page 4 2000-06-06 BSP 742 T Electrical Characteristics Parameter and Conditions Symbol DW7M &9 EE 9XQOHVVRWKHUZLVHVSHFLILHG Values min. typ. Unit max. Protection Functions Initial peak short circuit current limit (pin 5 to 3) A IL(SCp) T j = -40 °C, Vbb = 20 V - - 8 T j = 25 °C - 4 - T j = 150 °C 2 - - - 3 - VON(CL) 41 47 - Vbb(AZ) 41 - - Thermal overload trip temperature Tjt 150 - - °C Thermal hysteresis D Tjt - 10 - K Reverse battery 2) -Vbb - - 32 V Drain-source diode voltage (VOUT > Vbb) -VON - 600 - Repetitive short circuit current limit IL(SCr) T j = Tjt (see timing diagrams) Output clamp (inductive load switch off) V at V OUT = V bb - V ON(CL), I bb = 4 mA Overvoltage protection 1) I bb = 4 mA Reverse Battery mV T j = 150 °C 1 see also VON(CL) in circuit diagram on page 7 2Requires a 150 W resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Power dissipation is higher compared to normal operating conditions due to the voltage drop across the drain-source diode. The temperature protection is not active during reverse current operation! Input current has to be limited (see max. ratings page 3). Page 5 2000-06-06 BSP 742 T Electrical Characteristics Parameter and Conditions Symbol DW7M &9 EE 9XQOHVVRWKHUZLVHVSHFLILHG Values Unit min. typ. max. VIN(T+) - - 2.2 VIN(T-) 0.8 - - Input Input turn-on threshold voltage V (see page 12) Input turn-off threshold voltage (see page 12) Input threshold hysteresis D - 0.3 - Off state input current (see page 12) IIN(off) 1 - 30 IIN(on) 1 - 30 1.5 3.5 5 VIN(T) µA VIN = 0.7 V On state input current (see page 12) VIN = 5 V Input resistance (see page 6) RI Page 6 kW 2000-06-06 BSP 742 T Terms Inductive and overvoltage output clamp Ibb + V bb V Z Vbb V I IN IL IN PROFET ON VON OUT OUT V GND GND IN V bb R IGND VOUT GND VON clamped to 47V typ. Overvoltage protection of logic part Input circuit (ESD protection) R IN + V bb I V ESD- ZD I I IN I Z2 RI L o gic GND V 7KHXVHRI(6']HQHUGLRGHVDVYROWDJHFODPS DW'&FRQGLWLRQVLVQRWUHFRPPHQGHG Z1 GND R GN D S ignal GND VZ1 =6.1V typ., VZ2=Vbb(AZ)=47V typ., RI=3.5 kW typ., RGND=150W Reverse battery protection - V bb Logic IN RI OUT Power Inverse Diode GND RL R GND Signal GND Power GND RGND=150W, RI=3.5kW typ., Temperature protection is not active during inverse current Page 7 2000-06-06 BSP 742 T Vbb disconnect with charged inductive load GND disconnect Vbb Vbb IN high OUT PROFET IN GND V bb V PROFET OUT GND V GND IN V bb GND disconnect with GND pull up Inductive Load switch-off energy dissipation Vbb IN PROFET OUT E bb E AS GND E Load Vbb V bb V IN V GND IN PROFET OUT L = GND ZL ^ R EL ER L Energy stored in load inductance: EL = ½ * L * IL2 While demagnetizing load inductance, the enérgy dissipated in PROFET is E AS = Ebb + EL - ER = ò VON(CL) * iL(t) dt, with an approximate solution for RL > 0W: E AS = Page 8 IL * R L IL * L ) * ( V b b + | V O U T ( C L )| ) * ln (1 + | V O U T ( C L )| 2 * RL 2000-06-06 BSP 742 T Typ. transient thermal impedance Typ. transient thermal impedance Z thJA=f(tp) @ 6cm 2 heatsink area ZthJA=f(tp) @ min. footprint Parameter: D=tp/T Parameter: D=tp/T 10 2 K/W 10 2 D=0.5 D=0.5 K/W D=0.2 D=0.2 10 1 D=0.1 10 1 D=0.05 ZthJA D=0.05 ZthJA D=0.1 D=0.02 10 0 D=0.02 10 0 D=0.01 D=0.01 10 -1 D=0 10 -1 10 -2 -7 -6 -5 -4 -3 -2 -1 0 1 2 10 10 10 10 10 10 10 10 10 10 s 10 D=0 10 -2 -7 -6 -5 -4 -3 -2 -1 0 1 2 10 10 10 10 10 10 10 10 10 10 4 tp s 10 tp Typ. on-state resistance Typ. on-state resistance RON = f(Tj) ; Vbb = 13,5V ; V in = high RON = f(Vbb ); IL = 0.5A ; Vin = high 450 600 mW mW RON Ron 150°C 350 300 400 300 25°C 250 200 200 100 150 -40 -20 0 20 40 60 80 100 120 °C Tj 0 0 160 Page 9 -40°C 5 10 15 20 25 30 V Vbb 40 2000-06-06 4 BSP 742 T Typ. turn off time Typ. turn on time toff = f(Tj); RL = 47W ton = f(Tj ); R L = 47W 120 120 13,5...32V µs µs 9V ton 80 13,5V t off 9V 80 60 60 32V 40 40 20 20 0 -40 -20 0 20 40 60 80 100 120 0 -40 -20 °C 160 0 20 40 60 80 100 120 Tj Tj Typ. slew rate on Typ. slew rate off dV/dton = f(Tj ) ; RL = 47 W dV/dtoff = f(Tj); RL = 47 W 2.0 2.0 V/µs V/µs 1.6 -dV dtoff 1.6 dV dton °C 160 1.4 1.2 1.4 1.2 1.0 1.0 32V 32V 0.8 0.8 0.6 0.6 13.5V 0.4 9V 0.2 0.0 -40 -20 13,5V 0.4 9V 0.2 0 20 40 60 80 100 120 0.0 -40 -20 °C 160 Tj 0 20 40 60 80 100 120 °C 160 Tj Page 10 2000-06-06 BSP 742 T Typ. standby current Typ. leakage current Ibb(off) = f(Tj ) ; Vbb = 32V ; VIN = low IL(off) = f(Tj) ; Vbb = 32V ; VIN = low 1.0 6 µA IL(off) Ibb(off) µA 4 0.6 3 0.4 2 0.2 1 0 -40 -20 0 20 40 60 80 100 120 0.0 -40 -20 °C 160 0 20 40 60 80 100 120 Tj °C 160 Tj Typ. initial peak short circuit current limit Typ. initial short circuit shutdown time IL(SCp) = f(Tj) ; Vbb = 20V toff(SC) = f(Tj,start ) ; Vbb = 20V 3.0 5 ms toff(SC) IL(SCp) A 3 2.0 1.5 2 1.0 1 0 -40 -20 0.5 0 20 40 60 80 100 120 0.0 -40 -20 °C 160 0 20 40 60 80 100 120 °C 160 Tj Tj Page 11 2000-06-06 BSP 742 T Typ. input current Typ. input current IIN(on/off) = f(Tj); V bb = 13,5V; VIN = low/high IIN = f(VIN); Vbb = 13.5V VINlow £ 0,7V; VINhigh = 5V 200 12 µA 150°C µA 160 140 on I IN I IN 8 120 -40...25°C 100 6 off 80 4 60 40 2 20 0 -40 -20 0 20 40 60 80 100 120 0 0 °C 160 2 4 8 V Tj VIN Typ. input threshold voltage Typ. input threshold voltage VIN(th) = f(Tj ) ; Vbb = 13,5V VIN(th) = f(Vbb) ; Tj = 25°C 2.0 2.0 V on V 1.6 1.4 off 1.2 VIN(th) VIN(th) 1.6 1.4 1.0 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 20 40 60 80 100 120 0.0 5 °C 160 Tj off 1.2 1.0 0.0 -40 -20 on 10 15 20 25 35 V Vbb Page 12 2000-06-06 BSP 742 T Maximum allowable load inductance Maximum allowable inductive switch-off for a single switch off energy, single pulse L = f(I L); T jstart=150°C, V bb=13.5V, R L=0W EAS = f(IL ); Tjstart = 150°C, Vbb = 13,5V 4000 700 mH mJ 3000 EAS L 500 2500 400 2000 300 1500 200 1000 100 500 0 0 100 200 300 400 500 600 700 800 mA 1000 IL 0 0 100 200 300 400 500 600 700 800 mA 1000 IL Page 13 2000-06-06 BSP 742 T Timing diagrams Figure 2b: Switching a lamp, Figure 1a: Vbb turn on: IN IN OUT V bb I V L OUT t t Figure 2a: Switching a resistive load, turn-on/off time and slew rate definition Figure 2c: Switching an inductive load IN IN V V OUT OUT 90% t on d V /d to n d V /d to f f t o ff 10% I IL L t t Page 14 2000-06-06 BSP 742 T Figure 5: Undervoltage restart of charge pump Figure 3a: Turn on into short circuit, shut down by overtemperature, restart by cooling Von IN t I L I Vbb( ucp) L(SCp) I Vbb( under ) L(SCr) Vbb t off(SC) t +HDWLQJXSRIWKHFKLSPD\UHTXLUHVHYHUDOPLOOLVHFRQGVGHSHQGLQJ RQH[WHUQDOFRQGLWLRQV Figure 4: Overtemperature: Reset if Tj < T jt IN V OUT T J t Page 15 2000-06-06 BSP 742 T Package and ordering code all dimensions in mm Ordering code: Q67060-S7300-A2 Printed circuit board (FR4, 1.5mm thick, one layer 70µm, 6cm 2 active heatsink area ) as a reference for max. power dissipation Ptot nominal load current IL(nom) and thermal resistance R thja Published by Infineon Technologies AG, Bereichs Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Page 16 2000-06-06