ETC BSP742-T

BSP 742 T
Smart Power High-Side-Switch
Features
Product Summary
·
Overload protection
Overvoltage protection
Vbb(AZ)
41
V
·
Current limitation
Operating voltage
Vbb(on)
·
Short circuit protection
On-state resistance
RON
350
mW
·
Thermal shutdown with restart
Nominal load current
I L(nom)
0.8
A
·
Overvoltage protection (including load dump)
·
Fast demagnetization of inductive loads
·
Reverse battery protection with external resistor
·
CMOS compatible input
5...34 V
Loss of GND and loss of Vbb protection
· ESD - Protection
·
·
Very low standby current
Application
• All types of resistive, inductive and capacitive loads
• µC compatible power switch for 12 V and 24 V DC applications
• Replaces electromechanical relays and discrete circuits
General Description
N channel vertical power FET with charge pump, ground referenced CMOS compatible input,
monolithically integrated in Smart SIPMOS â technology. Fully protected by embedded
protection functions.
Page 1
2000-06-06
BSP 742 T
Block Diagram
+ V bb
Voltage
source
Overvoltage
protection
Current
limit
Gate
protection
V Logic
OUT
Limit for
unclamped
ind. loads
Charge pump
Level shifter
Temperature
sensor
Rectifier
IN
ESD
Load
Logic
miniPROFET
GND

Load GND
Signal GND
Pin
Symbol
Function
1
GND
Logic ground
2
IN
3
OUT
Output to the load
4
NC
not connected
5
Vbb
Positive power supply voltage
6
Vbb
Positive power supply voltage
7
Vbb
Positive power supply voltage
8
Vbb
Positive power supply voltage
Input, activates the power switch in case of logic high signal
Page 2
2000-06-06
BSP 742 T
Maximum Ratings at Tj = 25°C, unless otherwise specified
Parameter
Symbol
Value
Supply voltage
Vbb
40
Supply voltage for full short circuit protection
Vbb(SC)
30
Unit
V
T j = -40...+150 °C
Continuous input voltage
VIN
-10 ... +16
Load current (Short - circuit current, see page 5)
IL
self limited
Current through input pin (DC)
IIN
Operating temperature
Tj
-40 ...+150
Storage temperature
Tstg
-55 ... +150
Power dissipation 1)
Ptot
1.5
W
Inductive load switch-off energy dissipation 1)2)
EAS
100
mJ
±
A
mA
5
°C
single pulse, (see page 8)
Tj =150 °C, Vbb = 13.5 V, IL = 0.5 A
Load dump protection 2) VLoadDump3)= VA + V S
V
V/RDGGXPS
RI=2W, t d=400ms, VIN= low or high, VA=13,5V
RL = 27 W
40
RL = 45 W
60
Electrostatic discharge voltage (Human Body Model) VESD
according to ANSI EOS/ESD - S5.1 - 1993
kV
ESD STM5.1 - 1998
Input pin
±
1
all other pins
±
5
Thermal Characteristics
Thermal resistance @ min. footprint
Rth(JA)
-
95
-
Thermal resistance @ 6 cm 2 cooling area 1)
Rth(JA)
-
70
83
K/W
1 Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain
connection. PCB is vertical without blown air. (see page 16)
2not tested, specified by design
3V Loaddump is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 .
Supply voltages higher than Vbb(AZ) require an external current limit for the GND pin, e.g. with a
150W resistor in GND connection. A resistor for the protection of the input is integrated.
Page 3
2000-06-06
BSP 742 T
Electrical Characteristics
Parameter and Conditions
Symbol
DW7M ƒ&9EE 9XQOHVVRWKHUZLVHVSHFLILHG
Values
min.
typ.
Unit
max.
Load Switching Capabilities and Characteristics
On-state resistance
RON
mW
Tj = 25 °C, IL = 0.5 A, Vbb = 9...40 V
-
260
350
Tj = 150 °C
-
450
700
0.8
1.1
-
A
µs
Nominal load current; Device on PCB 1)
TC = 85 °C, Tj
£
IL(nom)
150 °C
Turn-on time
to 90% VOUT
ton
-
-
140
to 10% VOUT
toff
-
-
170
10 to 30% VOUT ,
dV/dton
-
-
2
70 to 40% VOUT ,
-dV/dtoff
-
-
2
Operating voltage
Vbb(on)
5
-
34
Undervoltage shutdown of charge pump
Vbb(under)
-
-
5
Undervoltage restart of charge pump
Vbb(u cp)
-
-
5.5
Standby current
I bb(off)
RL = 47 W
Turn-off time
RL = 47 W
Slew rate on
V/µs
RL = 47 W
Slew rate off
RL = 47 W
Operating Parameters
µA
Tj = -40...+85 °C, V IN = 0 V
-
-
12
Tj = 150 °C2) , VIN = 0 V
-
-
17
I L(off)
-
-
5
I GND
-
-
1
Leakage output current (included in Ibb(off))
V
VIN = 0 V
Operating current
mA
VIN = 5 V
1 Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain
connection. PCB is vertical without blown air. (see page 16)
2higher current due temperature sensor
Page 4
2000-06-06
BSP 742 T
Electrical Characteristics
Parameter and Conditions
Symbol
DW7M ƒ&9 EE 9XQOHVVRWKHUZLVHVSHFLILHG
Values
min.
typ.
Unit
max.
Protection Functions
Initial peak short circuit current limit (pin 5 to 3)
A
IL(SCp)
T j = -40 °C, Vbb = 20 V
-
-
8
T j = 25 °C
-
4
-
T j = 150 °C
2
-
-
-
3
-
VON(CL)
41
47
-
Vbb(AZ)
41
-
-
Thermal overload trip temperature
Tjt
150
-
-
°C
Thermal hysteresis
D
Tjt
-
10
-
K
Reverse battery 2)
-Vbb
-
-
32
V
Drain-source diode voltage (VOUT > Vbb)
-VON
-
600
-
Repetitive short circuit current limit
IL(SCr)
T j = Tjt (see timing diagrams)
Output clamp (inductive load switch off)
V
at V OUT = V bb - V ON(CL),
I bb = 4 mA
Overvoltage protection 1)
I bb = 4 mA
Reverse Battery
mV
T j = 150 °C
1 see also VON(CL) in circuit diagram on page 7
2Requires a 150 W resistor in GND connection. The reverse load current through the intrinsic drain-source diode has
to be limited by the connected load. Power dissipation is higher compared to normal operating conditions due to the
voltage drop across the drain-source diode. The temperature protection is not active during reverse current operation!
Input current has to be limited (see max. ratings page 3).
Page 5
2000-06-06
BSP 742 T
Electrical Characteristics
Parameter and Conditions
Symbol
DW7M ƒ&9 EE 9XQOHVVRWKHUZLVHVSHFLILHG
Values
Unit
min.
typ.
max.
VIN(T+)
-
-
2.2
VIN(T-)
0.8
-
-
Input
Input turn-on threshold voltage
V
(see page 12)
Input turn-off threshold voltage
(see page 12)
Input threshold hysteresis
D
-
0.3
-
Off state input current (see page 12)
IIN(off)
1
-
30
IIN(on)
1
-
30
1.5
3.5
5
VIN(T)
µA
VIN = 0.7 V
On state input current (see page 12)
VIN = 5 V
Input resistance (see page 6)
RI
Page 6
kW
2000-06-06
BSP 742 T
Terms
Inductive and overvoltage output clamp
Ibb
+ V bb
V
Z
Vbb
V
I IN
IL
IN
PROFET
ON
VON
OUT
OUT
V
GND
GND
IN
V
bb
R
IGND
VOUT
GND
VON clamped to 47V typ.
Overvoltage protection of logic part
Input circuit (ESD protection)
R
IN
+ V bb
I
V
ESD- ZD I
I
IN
I
Z2
RI
L o gic
GND
V
7KHXVHRI(6']HQHUGLRGHVDVYROWDJHFODPS
DW'&FRQGLWLRQVLVQRWUHFRPPHQGHG
Z1
GND
R GN D
S ignal GND
VZ1 =6.1V typ., VZ2=Vbb(AZ)=47V typ.,
RI=3.5 kW typ., RGND=150W
Reverse battery protection
- V bb
Logic
IN
RI
OUT
Power
Inverse
Diode
GND
RL
R GND
Signal GND
Power GND
RGND=150W, RI=3.5kW typ.,
Temperature protection is not active during inverse
current
Page 7
2000-06-06
BSP 742 T
Vbb disconnect with charged inductive
load
GND disconnect
Vbb
Vbb
IN
high
OUT
PROFET
IN
GND
V
bb
V
PROFET
OUT
GND
V
GND
IN
V
bb
GND disconnect with GND pull up
Inductive Load switch-off energy
dissipation
Vbb
IN
PROFET
OUT
E bb
E AS
GND
E Load
Vbb
V
bb
V
IN
V
GND
IN
PROFET
OUT
L
=
GND
ZL
^
R
EL
ER
L
Energy stored in load inductance: EL = ½ * L * IL2
While demagnetizing load inductance,
the enérgy dissipated in PROFET is
E AS = Ebb + EL - ER = ò VON(CL) * iL(t) dt,
with an approximate solution for RL > 0W:
E AS =
Page 8
IL * R L
IL * L
)
* ( V b b + | V O U T ( C L )| ) * ln (1 +
| V O U T ( C L )|
2 * RL
2000-06-06
BSP 742 T
Typ. transient thermal impedance
Typ. transient thermal impedance
Z thJA=f(tp) @ 6cm 2 heatsink area
ZthJA=f(tp) @ min. footprint
Parameter: D=tp/T
Parameter: D=tp/T
10
2
K/W
10 2
D=0.5
D=0.5
K/W
D=0.2
D=0.2
10 1
D=0.1
10 1
D=0.05
ZthJA
D=0.05
ZthJA
D=0.1
D=0.02
10 0
D=0.02
10 0
D=0.01
D=0.01
10 -1
D=0
10 -1
10 -2 -7 -6 -5 -4 -3 -2 -1 0
1
2
10 10 10 10 10 10 10 10 10 10
s
10
D=0
10 -2 -7 -6 -5 -4 -3 -2 -1 0
1
2
10 10 10 10 10 10 10 10 10 10
4
tp
s
10
tp
Typ. on-state resistance
Typ. on-state resistance
RON = f(Tj) ; Vbb = 13,5V ; V in = high
RON = f(Vbb ); IL = 0.5A ; Vin = high
450
600
mW
mW
RON
Ron
150°C
350
300
400
300
25°C
250
200
200
100
150
-40 -20
0
20
40
60
80 100 120
°C
Tj
0
0
160
Page 9
-40°C
5
10
15
20
25
30
V
Vbb
40
2000-06-06
4
BSP 742 T
Typ. turn off time
Typ. turn on time
toff = f(Tj); RL = 47W
ton = f(Tj ); R L = 47W
120
120
13,5...32V
µs
µs
9V
ton
80
13,5V
t off
9V
80
60
60
32V
40
40
20
20
0
-40 -20
0
20
40
60
80 100 120
0
-40 -20
°C 160
0
20
40
60
80 100 120
Tj
Tj
Typ. slew rate on
Typ. slew rate off
dV/dton = f(Tj ) ; RL = 47 W
dV/dtoff = f(Tj); RL = 47 W
2.0
2.0
V/µs
V/µs
1.6
-dV
dtoff
1.6
dV
dton
°C 160
1.4
1.2
1.4
1.2
1.0
1.0
32V
32V
0.8
0.8
0.6
0.6
13.5V
0.4
9V
0.2
0.0
-40 -20
13,5V
0.4
9V
0.2
0
20
40
60
80 100 120
0.0
-40 -20
°C 160
Tj
0
20
40
60
80 100 120
°C 160
Tj
Page 10
2000-06-06
BSP 742 T
Typ. standby current
Typ. leakage current
Ibb(off) = f(Tj ) ; Vbb = 32V ; VIN = low
IL(off) = f(Tj) ; Vbb = 32V ; VIN = low
1.0
6
µA
IL(off)
Ibb(off)
µA
4
0.6
3
0.4
2
0.2
1
0
-40 -20
0
20
40
60
80 100 120
0.0
-40 -20
°C 160
0
20
40
60
80 100 120
Tj
°C 160
Tj
Typ. initial peak short circuit current limit
Typ. initial short circuit shutdown time
IL(SCp) = f(Tj) ; Vbb = 20V
toff(SC) = f(Tj,start ) ; Vbb = 20V
3.0
5
ms
toff(SC)
IL(SCp)
A
3
2.0
1.5
2
1.0
1
0
-40 -20
0.5
0
20
40
60
80 100 120
0.0
-40 -20
°C 160
0
20
40
60
80 100 120
°C 160
Tj
Tj
Page 11
2000-06-06
BSP 742 T
Typ. input current
Typ. input current
IIN(on/off) = f(Tj); V bb = 13,5V; VIN = low/high
IIN = f(VIN); Vbb = 13.5V
VINlow £ 0,7V; VINhigh = 5V
200
12
µA
150°C
µA
160
140
on
I IN
I IN
8
120
-40...25°C
100
6
off
80
4
60
40
2
20
0
-40 -20
0
20
40
60
80 100 120
0
0
°C 160
2
4
8
V
Tj
VIN
Typ. input threshold voltage
Typ. input threshold voltage
VIN(th) = f(Tj ) ; Vbb = 13,5V
VIN(th) = f(Vbb) ; Tj = 25°C
2.0
2.0
V
on
V
1.6
1.4
off
1.2
VIN(th)
VIN(th)
1.6
1.4
1.0
0.8
0.8
0.6
0.6
0.4
0.4
0.2
0.2
0
20
40
60
80 100 120
0.0
5
°C 160
Tj
off
1.2
1.0
0.0
-40 -20
on
10
15
20
25
35
V
Vbb
Page 12
2000-06-06
BSP 742 T
Maximum allowable load inductance
Maximum allowable inductive switch-off
for a single switch off
energy, single pulse
L = f(I L); T jstart=150°C, V bb=13.5V, R L=0W
EAS = f(IL ); Tjstart = 150°C, Vbb = 13,5V
4000
700
mH
mJ
3000
EAS
L
500
2500
400
2000
300
1500
200
1000
100
500
0
0
100 200 300 400 500 600 700 800 mA 1000
IL
0
0
100 200 300 400 500 600 700 800 mA 1000
IL
Page 13
2000-06-06
BSP 742 T
Timing diagrams
Figure 2b: Switching a lamp,
Figure 1a: Vbb turn on:
IN
IN
OUT
V
bb
I
V
L
OUT
t
t
Figure 2a: Switching a resistive load,
turn-on/off time and slew rate definition
Figure 2c: Switching an inductive load
IN
IN
V
V OUT
OUT
90%
t on
d V /d to n
d V /d to f f
t
o ff
10%
I
IL
L
t
t
Page 14
2000-06-06
BSP 742 T
Figure 5: Undervoltage restart of charge pump
Figure 3a: Turn on into short circuit,
shut down by overtemperature, restart by cooling
Von
IN
t
I
L
I
Vbb( ucp)
L(SCp)
I
Vbb( under )
L(SCr)
Vbb
t off(SC)
t
+HDWLQJXSRIWKHFKLSPD\UHTXLUHVHYHUDOPLOOLVHFRQGVGHSHQGLQJ
RQH[WHUQDOFRQGLWLRQV
Figure 4: Overtemperature:
Reset if Tj < T jt
IN
V
OUT
T
J
t
Page 15
2000-06-06
BSP 742 T
Package and ordering code
all dimensions in mm
Ordering code:
Q67060-S7300-A2
Printed circuit board (FR4, 1.5mm thick, one
layer 70µm, 6cm 2 active heatsink area ) as
a reference for max. power dissipation Ptot
nominal load current IL(nom) and thermal
resistance R thja
Published by
Infineon Technologies AG,
Bereichs Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 1999
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted
characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement,
regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device
or system Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
Page 16
2000-06-06