SHENZHENFREESCALE IRFSL4310

IRF/B/S/SL4310
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
HEXFET® Power MOSFET
D
VDSS
RDS(on) typ.
max.
ID
G
Benefits
l Worldwide Best RDS(on) in TO-220
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
S
100V
5.6m:
7.0m:
140A
GDS
GDS
GDS
D2Pak
TO-220AB
IRFB4310
TO-262
IRFSL4310
IRFS4310
Absolute Maximum Ratings
Symbol
Parameter
Max.
Units
c
97 c
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V
140
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V
IDM
Pulsed Drain Current
PD @TC = 25°C
Maximum Power Dissipation
330
W
Linear Derating Factor
2.2
VGS
Gate-to-Source Voltage
± 20
W/°C
V
dV/dt
TJ
Peak Diode Recovery
14
TSTG
Storage Temperature Range
d
550
f
V/ns
°C
-55 to + 175
Operating Junction and
300
Soldering Temperature, for 10 seconds
(1.6mm from case)
x
Avalanche Characteristics
EAS (Thermally limited)
Single Pulse Avalanche Energy
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy
x
10lb in (1.1N m)
Mounting torque, 6-32 or M3 screw
c
A
e
mJ
980
See Fig. 14, 15, 22a, 22b,
g
A
mJ
Thermal Resistance
Symbol
Parameter
k
RθJC
Junction-to-Case
RθCS
Case-to-Sink, Flat Greased Surface , TO-220
RθJA
Junction-to-Ambient, TO-220
k
2
RθJA
Junction-to-Ambient (PCB Mount) , D Pak
1 / 11
jk
Typ.
Max.
–––
0.45
0.50
–––
–––
62
–––
40
www.freescale.net.cn
Units
°C/W
IRF/B/S/SL4310
Static @ TJ = 25°C (unless otherwise specified)
Symbol
V(BR)DSS
Parameter
Min. Typ. Max. Units
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
V
Conditions
100
–––
–––
VGS = 0V, ID = 250µA
–––
0.064
–––
V/°C Reference to 25°C, ID = 1mA
–––
5.6
7.0
mΩ VGS = 10V, ID = 75A
VGS(th)
Gate Threshold Voltage
2.0
–––
4.0
V
VDS = VGS, ID = 250µA
IDSS
Drain-to-Source Leakage Current
–––
–––
20
µA
VDS = 100V, VGS = 0V
–––
–––
250
IGSS
Gate-to-Source Forward Leakage
–––
–––
200
Gate-to-Source Reverse Leakage
–––
–––
-200
Gate Input Resistance
–––
1.4
–––
RG
d
g
VDS = 100V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
Ω
f = 1MHz, open drain
VGS = -20V
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
Min. Typ. Max. Units
Conditions
gfs
Qg
Forward Transconductance
160
–––
–––
S
VDS = 50V, ID = 75A
Total Gate Charge
–––
170
250
nC
ID = 75A
Qgs
Gate-to-Source Charge
–––
46
–––
VDS = 80V
Qgd
Gate-to-Drain ("Miller") Charge
–––
62
–––
VGS = 10V
td(on)
Turn-On Delay Time
–––
26
–––
tr
Rise Time
–––
110
–––
ID = 75A
td(off)
Turn-Off Delay Time
–––
68
–––
RG = 2.6Ω
tf
Fall Time
–––
78
–––
Ciss
Input Capacitance
–––
7670
–––
Coss
Output Capacitance
–––
540
–––
VDS = 50V
Crss
Reverse Transfer Capacitance
–––
280
–––
ƒ = 1.0MHz
–––
650
–––
VGS = 0V, VDS = 0V to 80V
–––
720.1
–––
VGS = 0V, VDS = 0V to 80V
i
Coss eff. (ER) Effective Output Capacitance (Energy Related)
Coss eff. (TR) Effective Output Capacitance (Time Related)
h
ns
VGS = 10V
pF
g
VDD = 65V
g
VGS = 0V
j, See Fig.11
h, See Fig. 5
Diode Characteristics
Symbol
Parameter
Min. Typ. Max. Units
c
Conditions
IS
Continuous Source Current
–––
––– 140
ISM
(Body Diode)
Pulsed Source Current
–––
–––
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
1.3
V
trr
Reverse Recovery Time
–––
45
68
ns
p-n junction diode.
TJ = 25°C, IS = 75A, VGS = 0V
VR = 85V,
TJ = 25°C
–––
55
83
Qrr
Reverse Recovery Charge
–––
82
120
nC
TJ = 25°C
–––
120
180
–––
3.3
–––
di
IRRM
Reverse Recovery Current
ton
Forward Turn-On Time
Notes:
 Calculated continuous current based on maximum allowable junction
temperature. Package limitation current is 75A
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.35mH
RG = 25Ω, IAS = 75A, VGS =10V. Part not recommended for use
above this value.
„ ISD ≤ 75A, di/dt ≤ 550A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
… Pulse width ≤ 400µs; duty cycle ≤ 2%.
2 / 11
A
MOSFET symbol
D
showing the
integral reverse
550
TJ = 125°C
G
S
g
IF = 75A
di/dt = 100A/µs
g
TJ = 125°C
A
TJ = 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
† Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
‰ Rθ is measured at TJ approximately 90°C
www.freescale.net.cn
IRF/B/S/SL4310
1000
1000
100
BOTTOM
10
BOTTOM
100
4.5V
≤ 60µs PULSE WIDTH
Tj = 25°C
4.5V
0.1
1
10
0.1
100
1
10
100
VDS, Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
3.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
1000
ID, Drain-to-Source Current(Α)
≤ 60µs PULSE WIDTH
Tj = 175°C
10
1
100
TJ = 175°C
10
TJ = 25°C
VDS = 50V
≤ 60µs PULSE WIDTH
1
3.0
4.0
5.0
6.0
7.0
ID = 75A
VGS = 10V
2.5
2.0
1.5
1.0
0.5
8.0
-60 -40 -20
VGS, Gate-to-Source Voltage (V)
12000
VGS, Gate-to-Source Voltage (V)
Coss = Cds + Cgd
Ciss
8000
6000
4000
2000
Coss
Crss
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
3 / 11
ID= 75A
VDS = 80V
VDS= 50V
VDS= 20V
16
12
8
4
0
0
1
20 40 60 80 100 120 140 160 180
Fig 4. Normalized On-Resistance vs. Temperature
20
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
10000
0
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
C, Capacitance (pF)
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
0
40
80
120
160
200
240
280
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
www.freescale.net.cn
IRF/B/S/SL4310
10000
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
1000.0
TJ = 175°C
100.0
10.0
TJ = 25°C
1.0
OPERATION IN THIS AREA
LIMITED BY R DS (on)
1000
100
100µsec
10
1
VGS = 0V
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
1
LIMITED BY PACKAGE
120
100
80
60
40
20
0
75
100
125
150
175
V(BR)DSS , Drain-to-Source Breakdown Voltage
140
50
100
1000
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode
Forward Voltage
25
10
VDS , Drain-toSource Voltage (V)
VSD , Source-to-Drain Voltage (V)
ID , Drain Current (A)
10msec
DC
0.1
0.1
120
115
110
105
100
-60 -40 -20 0
TC , Case Temperature (°C)
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Drain-to-Source Breakdown Voltage
EAS, Single Pulse Avalanche Energy (mJ)
4.0
3.5
3.0
Energy (µJ)
1msec
Tc = 25°C
Tj = 175°C
Single Pulse
2.5
2.0
1.5
1.0
0.5
0.0
2400
I D
12A
17A
BOTTOM 75A
TOP
2000
1600
1200
800
400
0
0
20
40
60
80
100
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4 / 11
120
25
50
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent
www.freescale.net.cn
IRF/B/S/SL4310
1
Thermal Response ( ZthJC )
D = 0.50
0.1
0.20
0.10
0.05
0.01
τJ
0.02
0.01
R1
R1
τJ
τ1
R2
R2
τC
τ2
τ1
τ
Ri (°C/W) τi (sec)
0.1962 0.00117
0.2542
τ2
0.016569
Ci= τi/Ri
Ci= i/Ri
0.001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
100
Avalanche Current (A)
Duty Cycle = Single Pulse
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆ Tj = 150°C
and Tstart =25°C (Single Pulse)
0.01
0.05
0.10
10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
1000
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as neither Tjmax nor
Iav (max) is exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 75A
800
600
400
200
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
Fig 15. Maximum Avalanche Energy vs. Temperature
5 / 11
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
www.freescale.net.cn
IRF/B/S/SL4310
20
ID = 1.0A
ID = 1.0mA
ID = 250µA
4.0
16
IRRM - (A)
VGS(th) Gate threshold Voltage (V)
5.0
3.0
12
8
IF = 30A
VR = 85V
2.0
4
TJ = 125°C
TJ = 25°C
1.0
0
-75 -50 -25
0
25
50
75
100 125 150 175
100 200 300 400 500 600 700 800 900 1000
TJ , Temperature ( °C )
dif / dt - (A / µs)
Fig. 17 - Typical Recovery Current vs. dif/dt
20
500
16
400
QRR - (nC)
IRRM - (A)
Fig 16. Threshold Voltage Vs. Temperature
12
8
IF = 45A
VR = 85V
4
300
200
IF = 30A
VR = 85V
100
TJ = 125°C
TJ = 25°C
TJ = 125°C
TJ = 25°C
0
0
100 200 300 400 500 600 700 800 900 1000
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
dif / dt - (A / µs)
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig. 19 - Typical Stored Charge vs. dif/dt
500
QRR - (nC)
400
300
200
100
IF = 45A
VR = 85V
TJ = 125°C
TJ = 25°C
0
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
Fig. 20 - Typical Stored Charge vs. dif/dt
6 / 11
www.freescale.net.cn
IRF/B/S/SL4310
D.U.T
Driver Gate Drive
ƒ
-
‚
„
-
-
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
+
V
- DD
IAS
VGS
20V
tp
A
0.01Ω
I AS
Fig 22a. Unclamped Inductive Test Circuit
Fig 22b. Unclamped Inductive Waveforms
LD
VDS
VDS
90%
+
VDD -
10%
D.U.T
VGS
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
td(on)
Fig 23a. Switching Time Test Circuit
td(off)
tr
tf
Fig 23b. Switching Time Waveforms
Id
Vds
Vgs
L
VCC
DUT
0
Vgs(th)
1K
Qgs1 Qgs2
Fig 24a. Gate Charge Test Circuit
7 / 11
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
www.freescale.net.cn
IRF/B/S/SL4310
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
EXAMPLE: T HIS IS AN IRL3103L
LOT CODE 1789
AS S EMBLED ON WW 19, 1997
IN T HE AS S EMBLY LINE "C"
PART NUMBER
AS S EMBLY
LOT CODE
OR
PART NUMBER
AS S EMBLY
LOT CODE
9 / 11
DAT E CODE
P = DES IGNAT ES LEAD-FREE
PRODUCT (OPTIONAL)
YEAR 7 = 1997
WEEK 19
A = AS S EMBLY S IT E CODE
www.freescale.net.cn
IRF/B/S/SL4310
D2Pak (TO-263AB) Tape & Reel Information
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
11 / 11
60.00 (2.362)
MIN.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
www.freescale.net.cn