PD - 97250 IRGP4068DPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS IRGP4068D-EPbF Features • • • • • • • • • • Low VCE (ON) Trench IGBT Technology Low Switching Losses Maximum Junction temperature 175 °C 5 µS short circuit SOA Square RBSOA 100% of the parts tested for 4X rated current (ILM) Positive VCE (ON) Temperature co-efficient Ultra-low VF Hyperfast Diode Tight parameter distribution Lead Free Package C VCES = 600V IC = 48A, TC = 100°C tSC ≥ 5µs, TJ(max) = 175°C G VCE(on) typ. = 1.65V E n-channel Benefits C • Device optimized for induction heating and soft switching applications • High Efficiency due to Low VCE(on), Low Switching Losses and Ultra-low VF • Rugged transient Performance for increased reliability • Excellent Current sharing in parallel operation • Low EMI C GC E TO-247AC IRGP4068DPbF G Gate E GC TO-247AD IRGP4068D-EPbF C Collector E Emitter Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 600 V IC @ TC = 25°C Continuous Collector Current 96 IC @ TC = 100°C Continuous Collector Current 48 ICM 192 ILM Pulse Collector Current Clamped Inductive Load Current IF @ TC = 160°C IFSM Diode Continous Forward Current Diode Non Repetitive Peak Surge Current @ TJ = 25°C IFM Diode Peak Repetitive Forward Current VGE Continuous Gate-to-Emitter Voltage ±20 Transient Gate-to-Emitter Voltage ±30 c 192 d A 8.0 d 175 16 PD @ TC = 25°C Maximum Power Dissipation 330 PD @ TC = 100°C Maximum Power Dissipation 170 TJ Operating Junction and TSTG Storage Temperature Range V W -55 to +175 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Min. Typ. Max. Units RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) Parameter ––– ––– 0.45 °C/W RθJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) ––– ––– 2.0 RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.24 ––– RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– 80 ––– 1 www.irf.com 08/16/06 IRGP4068DPbF/IRGP4068D-EPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. V(BR)CES Collector-to-Emitter Breakdown Voltage Parameter 600 — — ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.30 — — 1.65 2.14 — 2.0 — — 2.05 — 4.0 — 6.5 VCE(on) VGE(th) Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Max. Units V Conditions VGE = 0V, IC = 100µA V/°C VGE = 0V, IC = 1mA (25°C-175°C) IC = 48A, VGE = 15V, TJ = 25°C V IC = 48A, VGE = 15V, TJ = 150°C V VCE = VGE, IC = 1.4mA Threshold Voltage temp. coefficient — -21 — gfe ICES Forward Transconductance — 32 — S µA VGE = 0V, VCE = 600V V IF = 8.0A VFM IGES Diode Forward Voltage Drop Gate-to-Emitter Leakage Current — 1.0 150 — 450 1000 — 0.96 1.05 — 0.81 0.86 — — ±100 Ref.Fig CT6 CT6 4,5,6 8,9,10 IC = 48A, VGE = 15V, TJ = 175°C ∆VGE(th)/∆TJ Collector-to-Emitter Leakage Current e mV/°C VCE = VGE, IC = 1.0mA (25°C - 175°C) 8,9 10,11 VCE = 50V, IC = 48A, PW = 80µs VGE = 0V, VCE = 600V, TJ = 175°C 7 IF = 8.0A, TJ = 150°C nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Qg Total Gate Charge (turn-on) Parameter — 95 Max. Units 140 Qge Gate-to-Emitter Charge (turn-on) — 28 42 Qgc Gate-to-Collector Charge (turn-on) — 35 53 Eoff Turn-Off Switching Loss — 1275 1481 µJ td(off) Turn-Off delay time — 145 176 µJ tf Fall time — 35 46 Eoff Turn-Off Switching Loss — 1585 — Conditions IC = 48A nC VGE = 15V Ref.Fig 18 CT1 VCC = 400V IC = 48A, VCC = 400V, VGE = 15V RG = 10Ω, L = 200µH,TJ = 25°C CT4 Energy losses include tail IC = 48A, VCC = 400V, VGE = 15V RG = 10Ω, L = 200µH,TJ = 25°C IC = 48A, VCC = 400V, VGE = 15V µJ RG = 10Ω, L = 200µH,TJ = 175°C CT4 Energy losses include tail td(off) Turn-Off delay time — 165 — tf Fall time — 45 — Cies Input Capacitance — 3025 — Coes Output Capacitance — 245 — Cres Reverse Transfer Capacitance — 90 — RBSOA Reverse Bias Safe Operating Area FULL SQUARE SCSOA Short Circuit Safe Operating Area 5 µJ IC = 48A, VCC = 400V, VGE = 15V WF1 RG=10Ω, L=200µH, TJ = 175°C VGE = 0V pF 17 VCC = 30V f = 1.0Mhz TJ = 175°C, IC = 192A 3 VCC = 480V, Vp =600V CT2 Rg = 10Ω, VGE = +15V to 0V — — µs VCC = 400V, Vp =600V Rg = 10Ω, VGE = +15V to 0V 16, CT3 WF2 Notes: VCC = 80% (VCES), VGE = 20V, L = 200µH, RG = 10Ω. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. 2 www.irf.com IRGP4068DPbF/IRGP4068D-EPbF 100 350 90 300 80 250 70 200 Ptot (W) IC (A) 60 50 40 150 30 100 20 50 10 0 0 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 T C (°C) T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 200 1000 180 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 160 140 IC (A) ICE (A) 100 10 120 100 80 60 40 20 0 1 10 100 0 1000 2 4 VCE (V) 200 180 180 140 ICE (A) ICE (A) 100 80 120 100 80 60 60 40 40 20 20 0 0 0 2 4 6 8 10 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs www.irf.com VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 160 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 120 10 Fig. 4 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs 200 140 8 VCE (V) Fig. 3 - Reverse Bias SOA TJ = 175°C; VGE =15V 160 6 0 2 4 6 8 10 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 80µs 3 IRGP4068DPbF/IRGP4068D-EPbF 20 18 16 VCE (V) 14 12 ICE = 24A ICE = 48A 10 ICE = 96A 8 6 4 2 0 5 10 15 20 VGE (V) Fig. 8 - Typical VCE vs. VGE TJ = -40°C 20 20 18 18 16 16 14 14 12 ICE = 24A ICE = 48A 10 VCE (V) VCE (V) Fig. 7 - Typ. Diode Forward Voltage Drop Characteristics ICE = 96A 8 12 10 ICE = 96A 8 6 6 4 4 2 2 0 ICE = 24A ICE = 48A 0 5 10 15 20 5 10 VGE (V) 20 VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = 25°C Fig. 10 - Typical VCE vs. VGE TJ = 175°C 6000 200 180 T J = 25°C T J = 175°C 160 5000 140 EOFF 4000 Energy (µJ) ICE (A) 15 120 100 80 3000 2000 60 40 1000 20 0 0 0 5 10 VGE (V) Fig. 11 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs 4 15 0 25 50 75 100 IC (A) Fig. 12 - Typ. Energy Loss vs. IC TJ = 175°C; L = 200µH; VCE = 400V, RG = 10Ω; VGE = 15V www.irf.com IRGP4068DPbF/IRGP4068D-EPbF 5000 1000 4500 EOFF tdOFF 3500 Energy (µJ) Swiching Time (ns) 4000 100 3000 2500 tF 2000 1500 1000 10 0 20 40 60 80 0 100 25 50 IC (A) 400 18 tdOFF 16 350 Tsc Isc Time (µs) 14 100 tF 300 12 250 10 200 8 150 6 100 50 4 10 0 25 50 75 100 8 125 Current (A) Swiching Time (ns) 125 Fig. 14 - Typ. Energy Loss vs. RG TJ = 175°C; L = 200µH; VCE = 400V, ICE = 48A; VGE = 15V 1000 10 12 14 16 18 VGE (V) RG (Ω) Fig. 16 - VGE vs. Short Circuit VCC = 400V; TC = 25°C Fig. 15 - Typ. Switching Time vs. RG TJ = 175°C; L = 200µH; VCE = 400V, ICE = 48A; VGE = 15V 10000 16 VGE, Gate-to-Emitter Voltage (V) Cies 1000 Coes 100 Cres 10 V CES = 300V 14 V CES = 400V 12 10 8 6 4 2 0 0 20 40 60 80 VCE (V) Fig. 17 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz www.irf.com 100 Rg (Ω) Fig. 13 - Typ. Switching Time vs. IC TJ = 175°C; L = 200µH; VCE = 400V, RG = 10Ω; VGE = 15V Capacitance (pF) 75 100 0 25 50 75 100 Q G, Total Gate Charge (nC) Fig. 18 - Typical Gate Charge vs. VGE ICE = 48A; L = 600µH 5 IRGP4068DPbF/IRGP4068D-EPbF Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.1 0.20 0.10 0.05 τJ 0.02 0.01 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 τC τ τ2 τ1 τ2 τ3 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri 1E-005 Ri (°C/W) τi (sec) 0.0248 0.000014 0.0652 0.000050 0.1537 0.001041 0.2065 0.013663 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 R4 R4 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) °C/W 10 1 D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 τJ 0.01 0.0001 1E-006 1E-005 τJ τ1 R2 R2 R3 R3 R4 R4 τC τ τ2 τ1 τ2 τ3 τ3 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 R1 R1 τ4 τ4 Ri (°C/W) τi (sec) 0.0400 0.000030 0.7532 0.000717 0.8317 0.004860 0.3766 0.036590 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 20. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) 6 www.irf.com IRGP4068DPbF/IRGP4068D-EPbF L L VC C D UT 0 80 V DU T 4 80V Rg 1K Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit DIODE CLAMP / DUT L 4x DC - 5V 360V DUT / DRIVER DUT VCC Rg Fig.C.T.3 - S.C. SOA Circuit R= Fig.C.T.4 - Switching Loss Circuit VCC ICM C force 400µH D1 10K C sense DUT VCC G force DUT 0.0075µ Rg E sense E force Fig.C.T.5 - Resistive Load Circuit www.irf.com Fig.C.T.6 - BVCES Filter Circuit 7 IRGP4068DPbF/IRGP4068D-EPbF 700 140 600 600 120 500 500 VCE 400 60 90% ICE 5% VCE 100 5% ICE 0 EOFF Loss 0.10 0.60 300 300 200 200 100 100 ICE (A) 300 200 40 20 0 -20 1.10 Time(µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 8 ICE 80 tf -100 -0.40 500 400 VCE (V) VCE (V) 400 100 600 0 0 -100 -5.00 0.00 5.00 -100 10.00 time (µS) Fig. WF2 - Typ. S.C. Waveform @ TJ = 25°C using Fig. CT.3 www.irf.com IRGP4068DPbF/IRGP4068D-EPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 ,5)3( + '$7(&2'( <($5 :((. /,1(+ TO-247AC package is not recommended for Surface Mount Application. www.irf.com 9 IRGP4068DPbF/IRGP4068D-EPbF TO-247AD Package Outline Dimensions are shown in millimeters (inches) TO-247AD Part Marking Information (;$03/( 7+,6,6$1,5*3%.'( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 + $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(+ TO-247AD package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/06 10 www.irf.com