BFP620F NPN Silicon Germanium RF Transistor* • High gain low noise RF transistor 3 • Small package 1.4 x 0.8 x 0.59 mm 2 4 1 • Outstanding noise figure F = 0.7 dB at 1.8 GHz Outstanding noise figure F = 1.3 dB at 6 GHz • Maximum stable gain Gms = 21 dB at 1.8 GHz Gma = 10 dB at 6 GHz Top View 4 3 • Gold metallization for extra high reliability XYs • Pb-free (RoHS compliant) package 1) 1 • Qualified according AEC Q101 2 Direction of Unreeling * Short term description ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type BFP620F Marking R2s 1=B Pin Configuration 2=E 3=C 4=E - Package - TSFP-4 Maximum Ratings Parameter Symbol Collector-emitter voltage VCEO Value Unit V TA > 0 °C 2.3 TA ≤ 0 °C 2.1 Collector-emitter voltage VCES 7.5 Collector-base voltage VCBO 7.5 Emitter-base voltage VEBO 1.2 Collector current IC 80 Base current IB 3 Total power dissipation2) Ptot 185 mW Junction temperature Tj 150 °C Ambient temperature TA -65 ... 150 Storage temperature T stg -65 ... 150 mA TS ≤ 96°C 1Pb-containing 2T package may be available upon special request is measured on the collector lead at the soldering point to the pcb S 2007-04-20 1 BFP620F Thermal Resistance Parameter Symbol Value Unit Junction - soldering point 1) RthJS ≤ 290 K/W Electrical Characteristics at TA = 25°C, unless otherwise specified Symbol Values Parameter Unit min. typ. max. 2.3 2.8 - V ICES - - 10 µA ICBO - - 100 nA IEBO - - 3 µA hFE 110 180 270 DC Characteristics Collector-emitter breakdown voltage V(BR)CEO IC = 1 mA, I B = 0 Collector-emitter cutoff current VCE = 7.5 V, V BE = 0 Collector-base cutoff current VCB = 5 V, IE = 0 Emitter-base cutoff current VEB = 0.5 V, IC = 0 DC current gain - IC = 50 mA, VCE = 1.5 V, pulse measured 1For calculation of RthJA please refer to Application Note Thermal Resistance 2007-04-20 2 BFP620F Electrical Characteristics at TA = 25°C, unless otherwise specified Symbol Values Unit Parameter min. typ. max. AC Characteristics (verified by random sampling) Transition frequency fT - 65 - Ccb - 0.12 0.2 Cce - 0.2 - Ceb - 0.45 - GHz IC = 50 mA, VCE = 1.5 V, f = 1 GHz Collector-base capacitance pF VCB = 2 V, f = 1 MHz, V BE = 0 , emitter grounded Collector emitter capacitance VCE = 2 V, f = 1 MHz, V BE = 0 , base grounded Emitter-base capacitance VEB = 0.5 V, f = 1 MHz, VCB = 0 , collector grounded Noise figure dB F IC = 5 mA, VCE = 1.5 V, f = 1.8 GHz, ZS = ZSopt - 0.7 - IC = 5 mA, VCE = 1.5 V, f = 6 GHz, ZS = ZSopt - 1.3 - G ms - 21 - dB G ma - 10 - dB Power gain, maximum stable1) IC = 50 mA, VCE = 1.5 V, ZS = ZSopt, ZL = ZLopt , f = 1.8 GHz Power gain, maximum available1) IC = 50 mA, VCE = 1.5 V, ZS = ZSopt, ZL = ZLopt, f = 6 GHz |S21e|2 Transducer gain dB IC = 50 mA, VCE = 1.5 V, ZS = ZL = 50 Ω, f = 1.8 GHz - 19.5 - f = 6 GHz - 9.5 - IP 3 - 25 - P-1dB - 14 - Third order intercept point at output2) dBm VCE = 2 V, I C = 50 mA, ZS =ZL=50 Ω, f = 1.8 GHz 1dB Compression point at output IC = 50 mA, VCE = 2 V, ZS =ZL=50 Ω, f = 1.8 GHz 1/2 ma = |S 21e / S12e| (k-(k²-1) ), Gms = |S21e / S12e | 2IP3 value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz 1G 2007-04-20 3 BFP620F SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax): Transistor Chip Data: IS = VAF = NE = VAR = NC = RBM = CJE = TF = ITF = VJC = TR = MJS = XTI = AF = TITF1 0.22 1000 2 2 2 2.707 250.7 1.43 2.4 0.6 0.2 0.5 3 fA V V - 2 -0.0065 - Ω fF ps A V ns - BF = IKF = BR = IKR = RB = RE = VJE = XTF = PTF = MJC = CJS = NK = FC = KF = TITF2 425 0.25 50 10 3.129 0.6 0.75 10 0 0.5 128.1 -1.42 0.8 7.291E-11 1.0E-5 A mA Ω V deg fF - NF = ISE = NR = ISC = IRB = RC = MJE = VTF = CJC = XCJC = VJS = EG = TNOM 1.025 21 1 18 1.522 2.364 0.3 1.5 124.9 1 0.52 1.078 298 fA pA mA Ω V fF V eV K All parameters are ready to use, no scalling is necessary. Package Equivalent Circuit: To avoid high complexity of the package equivalent circuit, both emitter leads of TSFP-4 are combined in one electrical connection.RLxI are series resistors for the inductances LxI and Kxa-yb are the coupling coefficients between the inductances Lxa and Lyb . LB0 = LE0 = LC0 = KB0-E0 = KB0-C0 = KE0-C0 = CBE = CBC = CCE = LBI = RLBI = LEI = RLEI = LCI = RLI = KBI-EI = KBI-CI = KEI-CI = 0.22 0.28 0.22 0.1 0.01 0.11 34 2 33 0.42 0.15 0.26 0.11 0.35 0.13 -0.05 -0.08 0.2 nH nH nH fF fF fF nH Ω nH Ω nH Ω - Valid up to 6GHz 2007-04-20 4 BFP620F Total power dissipation Ptot = ƒ(TS) Permissible Pulse Load RthJS = ƒ(t p) 10 3 200 mW 160 K/W RthJS Ptot 140 120 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 2 100 80 60 40 20 0 0 15 30 45 60 75 90 105 120 °C 10 1 -7 10 150 10 -6 10 -5 10 -4 10 -3 10 -2 TS s 10 tp Permissible Pulse Load Collector-base capacitance Ccb= ƒ(VCB) Ptotmax/P totDC = ƒ(tp) f = 1MHz 10 1 0.4 Ptotmax / PtotDC pF CCB 0.3 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 0.25 0.2 0.15 0.1 0.05 10 0 -7 10 10 -6 10 -5 10 -4 10 -3 10 -2 s 10 0 0 0 tp 1 2 3 4 5 6 V 8 VCB 2007-04-20 5 0 BFP620F Third order Intercept Point IP3=ƒ(IC) Transition frequency fT = ƒ(IC) (Output, ZS=ZL=50Ω) f = 1GHz VCE = parameter, f =1.8GHz VCE = Parameter in V 30 70 GHz 2.3V dBm 60 1.7V 1 to 2.3 55 20 50 fT IP3 1.4V 15 45 0.8 40 0.8V 10 35 1.1V 30 25 5 20 15 0 10 0.3 0.5 5 -5 0 10 20 30 40 50 60 70 mA 0 0 90 10 20 30 40 50 60 70 80 mA IC 100 IC Power gain Gma, Gms = ƒ(IC) Power Gain Gma, Gms = ƒ(f), VCE = 1.5V |S21|² = f (f) f = Parameter in GHz VCE = 1.5V, I C = 50mA 50 30 dB dB 0.9 26 40 24 35 1.8 G G 22 20 30 18 2.4 16 3 14 4 12 5 10 6 25 20 |S21|² Gma 15 10 8 6 0 Gms 10 20 30 40 50 60 70 mA 5 0 90 IC 1 2 3 4 GHz 6 f 2007-04-20 6 BFP620F Power gain Gma, Gms = ƒ (VCE) Noise figure F = ƒ(I C) IC = 50mA VCE = 1.5V, ZS = ZSopt f = Parameter in GHz 30 3 dB 0.9 24 2.5 1.8 G 20 2.4 2 3 16 4 F [dB] 5 12 1.5 6 8 1 4 f = 6GHz f = 5GHz f = 4GHz f = 3GHz f = 2.4GHz f = 1.8GHz f = 0.9GHz 0.5 0 -4 0.2 0.6 1 1.4 V 1.8 2.6 0 0 VCE 10 20 30 40 50 60 70 80 I [mA] c Noise figure F = ƒ(IC ) Noise figure F = ƒ(f) VCE = 1.5V, f = 1.8 GHz VCE = 1.5V, ZS = ZSopt 3 2.5 2.5 2 2 I = 50mA F [dB] F [dB] 1.5 1.5 C IC = 5.0mA 1 1 ZS = 50Ω Z =Z S Sopt 0.5 0.5 0 0 0 10 20 30 40 50 60 70 80 1 I [mA] 2 3 4 5 6 7 f [GHz] c 2007-04-20 7 BFP620F Source impedance for min. noise figure vs. frequency VCE = 1.5V, IC = 5.0mA/50.0mA 1 1.5 2 0.5 0.4 3 0.3 4 0.2 2.4GHz 5 1.8GHz 3GHz 10 0.1 0.1 0 0.2 0.3 0.4 0.5 1 4GHz −0.1 1.5 2 3 4 5 5GHz −10 6GHz −0.2 Ic = 5.0mA −0.3 −5 −4 −3 Ic = 50mA −0.4 −0.5 −2 −1.5 −1 2007-04-20 8 Package TSFP-4 BFP620F Package Outline 0.55 ±0.04 0.2 ±0.05 3 1 1.2 ±0.05 0.2 ±0.05 4 2 0.2 ±0.05 10˚ MAX. 0.8 ±0.05 1.4 ±0.05 0.15 ±0.05 0.5 ±0.05 0.5 ±0.05 Foot Print 0.9 0.45 0.35 0.5 0.5 Marking Layout (Example) Manufacturer BFP420F Type code Pin 1 Standard Packing Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel 0.2 1.4 8 4 Pin 1 0.7 1.55 2007-04-20 9 BFP620F Edition 2006-02-01 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2007. All Rights Reserved. Attention please! The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office ( www.infineon.com ). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 2007-04-20 10