PD - 94537 IRF7491 HEXFET® Power MOSFET Applications High frequency DC-DC converters VDSS RDS(on) max ID 80V 16mΩ@VGS = 10V 9.7A Benefits Low Gate to Drain Charge to Reduce Switching Losses Fully Characterized Capacitance Including Effective COSS to Simplify Design, (See App. Note AN1001) Fully Characterized Avalanche Voltage and Current A A D 1 8 S 2 7 D S 3 6 D G 4 5 D S SO-8 Top View Absolute Maximum Ratings Max. Units Drain-to-Source Voltage Parameter 80 V VGS Gate-to-Source Voltage ± 20 ID @ TA = 25°C Continuous Drain Current, VGS @ 10V 9.7 ID @ TA = 100°C Continuous Drain Current, VGS @ 10V 6.1 IDM Pulsed Drain Current 77 PD @TA = 25°C Maximum Power Dissipation 2.5 W Linear Derating Factor 0.02 W/°C 4.4 -55 to + 150 V/ns °C VDS dv/dt TJ Peak Diode Recovery dv/dt Operating Junction and TSTG Storage Temperature Range A Thermal Resistance Typ. Max. Units RθJL Junction-to-Drain Lead Parameter ––– 20 °C/W RθJA Junction-to-Ambient (PCB Mount) * ––– 50 Notes through www.irf.com are on page 8 1 08/30/02 IRF7491 Static @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS Drain-to-Source Breakdown Voltage ∆V(BR)DSS/∆TJ RDS(on) Min. Typ. Max. Units V Conditions 80 ––– ––– VGS = 0V, ID = 250µA Breakdown Voltage Temp. Coefficient ––– 0.08 ––– V/°C Reference to 25°C, ID = 1mA Static Drain-to-Source On-Resistance ––– 14 16 VGS(th) Gate Threshold Voltage 3.5 ––– 5.5 mΩ V VDS = VGS, ID = 250µA IDSS Drain-to-Source Leakage Current ––– ––– 1.0 µA VDS = 64V, VGS = 0V ––– ––– 250 IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -100 VGS = 10V, ID = 5.8A VDS = 64V, VGS = 0V, TJ = 125°C VGS = -20V Dynamic @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units 9.6 ––– ––– S Conditions gfs Qg Forward Transconductance VDS = 25V, ID = 5.8A Total Gate Charge ––– 51 76 Qgs Gate-to-Source Charge ––– 18 ––– Qgd Gate-to-Drain ("Miller") Charge ––– 18 ––– VGS = 10V td(on) Turn-On Delay Time ––– 22 ––– VDD = 40V tr Rise Time ––– 19 ––– td(off) Turn-Off Delay Time ––– 32 ––– tf Fall Time ––– 10 ––– VGS = 10V Ciss Input Capacitance ––– 2940 ––– VGS = 0V Coss Output Capacitance ––– 290 ––– Crss Reverse Transfer Capacitance ––– 160 ––– Coss Output Capacitance ––– 980 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 210 ––– VGS = 0V, VDS = 64V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 310 ––– VGS = 0V, VDS = 0V to 64V ID = 5.8A nC VDS = 40V ID = 5.8A ns RG = 6.2Ω VDS = 25V pF ƒ = 1.0MHz Avalanche Characteristics Parameter Single Pulse Avalanche Energy Typ. Max. Units EAS ––– 130 mJ IAR Avalanche Current ––– 5.8 A Diode Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 9.7 ISM (Body Diode) Pulsed Source Current ––– ––– 77 showing the integral reverse VSD (Body Diode) Diode Forward Voltage ––– ––– 1.3 V p-n junction diode. TJ = 25°C, IS = 5.8A, VGS = 0V trr Reverse Recovery Time ––– 47 ––– ns Qrr Reverse Recovery Charge ––– 110 ––– nC ton Forward Turn-On Time 2 MOSFET symbol A D G S TJ = 25°C, IF = 5.8A, VDD = 25V di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRF7491 100 100 10 BOTTOM 1 6.0V 0.1 TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 12V 10V 8.0V 7.5V 7.0V 6.5V 6.0V BOTTOM 10 6.0V 20µs PULSE WIDTH Tj = 150°C 20µs PULSE WIDTH Tj = 25°C 0.01 1 0.1 1 10 100 1000 0.1 VDS, Drain-to-Source Voltage (V) T J = 150°C 10.00 T J = 25°C VDS = 25V 20µs PULSE WIDTH 0.10 6.0 7.0 8.0 9.0 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 10.0 RDS(on) , Drain-to-Source On Resistance (Normalized) 2.5 5.0 10 100 1000 Fig 2. Typical Output Characteristics 100.00 1.00 1 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics ID, Drain-to-Source Current (Α) VGS 15V 12V 10V 8.0V 7.5V 7.0V 6.5V 6.0V ID = 9.7A 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRF7491 100000 VGS , Gate-to-Source Voltage (V) ID= 5.8A Coss = Cds + Cgd 10000 C, Capacitance(pF) 12.0 VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED Crss = Cgd Ciss 1000 Coss Crss 100 VDS= 64V VDS= 40V 10.0 VDS= 16V 8.0 6.0 4.0 2.0 0.0 10 1 10 100 0 VDS, Drain-to-Source Voltage (V) 30 40 50 60 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 100.00 1000 T J = 25°C 1.00 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 T J = 150°C 10.00 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 20 Q G Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 10 100µsec 1msec 1 T A = 25°C Tj = 150°C Single Pulse VGS = 0V 0.10 10msec 0.1 0.0 0.2 0.4 0.6 0.8 1.0 VSD, Source-toDrain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 10 0 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF7491 12 VDS ID , Drain Current (A) VGS 9 RD D.U.T. RG + -VDD 10V 6 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 10a. Switching Time Test Circuit 3 VDS 90% 0 25 50 75 100 125 150 TA , Ambient Temperature (°C) 10% VGS Fig 9. Maximum Drain Current Vs. Ambient Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response (Z thJA ) 100 D = 0.50 0.20 10 0.10 0.05 0.02 1 0.01 PDM t1 SINGLE PULSE (THERMAL RESPONSE) 0.1 0.01 0.00001 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJA + TA 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 RDS(on) , Drain-to -Source On Resistance (m Ω) RDS (on) , Drain-to-Source On Resistance (m Ω) IRF7491 20 19 18 17 VGS = 10V 16 15 14 13 12 11 10 0 10 20 30 40 50 60 70 45 40 35 30 25 ID = 9.7A 20 15 10 5 0 80 6 7 8 9 10 11 12 13 14 15 16 VGS, Gate -to -Source Voltage (V) ID , Drain Current (A) Fig 12. On-Resistance Vs. Drain Current Fig 13. On-Resistance Vs. Gate Voltage Current Regulator Same Type as D.U.T. QG VGS .2µF QGS .3µF D.U.T. + V - DS QGD 300 EAS , Single Pulse Avalanche Energy (mJ) 50KΩ 12V VG VGS 3mA Charge IG ID Current Sampling Resistors Fig 14a&b. Basic Gate Charge Test Circuit and Waveform 15V V(BR)DSS tp L VDS D.U.T RG IAS 20V I AS tp DRIVER + V - DD 0.01Ω Fig 15a&b. Unclamped Inductive Test circuit and Waveforms 6 A TOP 240 BOTTOM ID 2.6A 4.7A 5.8A 180 120 60 0 25 50 75 100 125 150 Starting TJ , Junction Temperature ( °C) Fig 15c. Maximum Avalanche Energy Vs. Drain Current www.irf.com IRF7491 SO-8 Package Details D DIM B 5 A 8 7 6 5 H E 0.25 [.010] 1 2 3 A 4 MIN .0532 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 E .1497 .1574 3.80 4.00 e .050 BASIC 1.27 BASIC e1 6X e e1 C .025 BASIC 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° y 0.10 [.004] 0.25 [.010] MAX K x 45° A A1 8X b MILLIMETERS MAX A 6 INCHES MIN 8X L 8X c 7 C A B FOOTPRINT NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 8X 0.72 [.028] 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA. 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 6.46 [.255] 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 3X 1.27 [.050] 8X 1.78 [.070] SO-8 Part Marking EXAMPLE: THIS IS AN IRF7101 (MOSFET) INTERNATIONAL RECTIFIER LOGO www.irf.com YWW XXXX F7101 DATE CODE (YWW) Y = LAST DIGIT OF THE YEAR WW = WEEK LOT CODE PART NUMBER 7 IRF7491 SO-8 Tape and Reel TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 7.4mH RG = 25Ω, IAS = 5.8A. Pulse width ≤ 400µs; duty cycle ≤ 2%. When mounted on 1 inch square copper board. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. ISD ≤ 5.8A, di/dt ≤ 250A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.08/02 8 www.irf.com