PD- 91330F IRF7413 SMPS MOSFET HEXFET® Power MOSFET Applications l High frequency DC-DC converters Benefits l Low Gate to Drain Charge to Reduce Switching Losses l Fully Characterized Capacitance Including Effective COSS to Simplify Design, (See App. Note AN1001) l Fully Characterized Avalanche Voltage and Current VDSS RDS(on) max(mW) ID 30V 11@VGS = 10V 12A A A D 1 8 S 2 7 D S 3 6 D 4 5 D S G SO-8 Top View Absolute Maximum Ratings Parameter ID @ TA = 25°C ID @ TA = 70°C IDM PD @TA = 25°C VGS dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Max. Units 12 9.6 96 2.5 0.02 ± 20 1.0 -55 to + 150 A W W/°C V V/ns °C 300 (1.6mm from case ) Thermal Resistance Symbol RθJL RθJA Parameter Junction-to-Drain Lead Junction-to-Ambient Typ. Max. Units ––– ––– 20 50 °C/W Notes through are on page 8 www.irf.com 1 3/19/02 IRF7413 Static @ TJ = 25°C (unless otherwise specified) Symbol V(BR)DSS ∆V(BR)DSS/∆TJ Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage IDSS Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. 30 ––– ––– ––– 1.0 ––– ––– ––– ––– Typ. ––– 0.03 ––– ––– ––– ––– ––– ––– ––– Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 11 VGS = 10V, ID = 7.2A mΩ 18 VGS = 4.5V, I D = 6.0A ––– V VDS = VGS, ID = 250µA 1.0 VDS = 24V, VGS = 0V µA 25 VDS = 24V, VGS = 0V, TJ = 125°C 100 VGS = 20V nA -100 VGS = -20V Dynamic @ TJ = 25°C (unless otherwise specified) gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. 16 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 44 7.9 9.2 8.8 8.0 35 14 1670 670 100 2290 680 1020 Max. Units Conditions ––– S VDS = 10V, ID = 7.2A 66 ID = 7.2A ––– nC VDS = 24V ––– VGS = 10V, ––– VDD = 100V ––– ID = 7.2A ns ––– RG = 6.2Ω ––– VGS = 10V ––– VGS = 0V ––– VDS = 25V ––– pF ƒ = 1.0MHz ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 24V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 24V Avalanche Characteristics Parameter EAS IAR Single Pulse Avalanche Energy Avalanche Current Typ. Max. Units ––– ––– 120 7.2 mJ A Diode Characteristics IS ISM VSD trr Qrr 2 Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Min. Typ. Max. Units ––– ––– 3.1 ––– ––– 96 ––– ––– ––– ––– 50 74 1.0 75 110 A V ns nC Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25°C, IS = 7.2A, VGS = 0V TJ = 25°C, IF = 7.2A di/dt = 100A/µs D S www.irf.com IRF7413 100 VGS TOP 10V 4.5V 3.7V 3.5V 3.3V 3.0V 2.7V BOTTOM 2.5V 10 1 0.1 2.5V 10 2.5V 1 0.1 0.01 1 10 20µs PULSE WIDTH Tj = 150°C 20µs PULSE WIDTH Tj = 25°C 0.1 VGS 10V 4.5V 3.7V 3.5V 3.3V 3.0V 2.7V BOTTOM 2.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 100 0.1 100 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) T J = 150°C 10 T J = 25°C VDS = 15V 20µs PULSE WIDTH 0 2.0 3.0 4.0 5.0 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 10 100 Fig 2. Typical Output Characteristics 100 1 1 VDS, Drain-to-Source Voltage (V) 6.0 ID = 12A 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRF7413 100000 ID= 7.2A VGS , Gate-to-Source Voltage (V) Crss Coss 10000 C, Capacitance (pF) 12 VGS = 0V, f = 1 MHZ C iss = C gs + C gd , C ds SHORTED = Cgd = Cds + Cgd Ciss Coss 1000 Crss 100 VDS= 24V VDS= 15V VDS= 6.0V 10 8 6 4 2 0 10 0 1 10 100 30 40 50 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 100.0 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) T J = 150°C ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 20 Q G Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) 10.0 1.0 T J = 25°C VGS = 0V 0.1 0.4 0.6 0.8 1.0 VSD, Source-toDrain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 10 100 100µsec 10 1msec Tc = 25°C Tj = 150°C Single Pulse 10msec 1 1.2 0 1 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF7413 12 VDS ID , Drain Current (A) 10 VGS D.U.T. RG 8 RD + -V DD 10V 6 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 4 Fig 10a. Switching Time Test Circuit 2 VDS 90% 0 25 50 75 100 125 150 TC , Case Temperature ( °C) 10% VGS Fig 9. Maximum Drain Current Vs. Ambient Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response (Z thJA ) 100 D = 0.50 0.20 10 0.10 0.05 PDM 0.02 1 t1 0.01 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJA + TA SINGLE PULSE (THERMAL RESPONSE) 0.1 0.00001 0.0001 0.001 0.01 0.1 1 10 100 t1, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 RDS(on) , Drain-to -Source On Resistance ( Ω) IRF7413 RDS (on) , Drain-to-Source On Resistance ( Ω) 0.024 0.020 0.016 VGS = 4.5V 0.012 VGS = 10V 0.008 0.004 0 20 40 60 0.06 0.05 0.04 ID = 7.2A 0.03 0.02 0.01 0.00 3.2 80 3.3 3.4 3.5 3.6 3.7 VGS, Gate -to -Source Voltage (V) ID , Drain Current (A) Fig 12. On-Resistance Vs. Drain Current Fig 13. On-Resistance Vs. Gate Voltage Current Regulator Same Type as D.U.T. QG VGS .2µF QGS .3µF D.U.T. QGD 300 + V - DS EAS , Single Pulse Avalanche Energy (mJ) 50KΩ 12V VG VGS 3mA Charge IG ID Current Sampling Resistors Fig 14a&b. Basic Gate Charge Test Circuit and Waveform 15V V(BR)DSS tp L VDS D.U.T RG IAS 20V I AS tp DRIVER + V - DD 0.01Ω Fig 15a&b. Unclamped Inductive Test circuit and Waveforms 6 A TOP 250 BOTTOM ID 3.2A 4.6A 7.2A 200 150 100 50 0 25 50 75 100 125 150 Starting TJ , Junction Temperature ( °C) Fig 15c. Maximum Avalanche Energy Vs. Drain Current www.irf.com IRF7413 SO-8 Package Details D DIM B 5 A 8 7 6 5 H E 0.25 [.010] 1 2 3 A 4 MIN .0532 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 E .1497 .1574 3.80 4.00 e .050 BAS IC e1 6X e e1 C 1.27 BASIC .025 BAS IC 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° y 0.10 [.004] 0.25 [.010] MAX K x 45° A A1 8X b MILLIMET ERS MAX A 6 INCHES MIN 8X L 8X c 7 C A B FOOT PRINT NOTES: 1. DIMENSIONING & T OLERANCING PER ASME Y14.5M-1994. 8X 0.72 [.028] 2. CONT ROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE S HOWN IN MILLIMET ERS [INCHES]. 4. OUT LINE CONF ORMS T O JEDEC OUT LINE MS -012AA. 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS . MOLD PROTRUSIONS NOT T O EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS . MOLD PROTRUSIONS NOT T O EXCEED 0.25 [.010]. 6.46 [.255] 7 DIMENSION IS THE LENGTH OF LEAD F OR SOLDERING TO A S UBS TRATE. 3X 1.27 [.050] 8X 1.78 [.070] SO-8 Part Marking EXAMPLE: THIS IS AN IRF7101 (MOSFET) INTERNAT IONAL RECTIFIER LOGO www.irf.com YWW XXXX F7101 DAT E CODE (YWW) Y = LAST DIGIT OF T HE YEAR WW = WEEK LOT CODE PART NUMBER 7 IRF7413 SO-8 Tape and Reel TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 4.4mH R G = 25Ω, IAS = 7.2A. Pulse width ≤ 300µs; duty cycle ≤ 2%. When mounted on 1 inch square copper board Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS ISD ≤ 7.2A, di/dt ≤ 120A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.3/02 8 www.irf.com