IRF IRF3000

PD- 94423
IRF3000
SMPS MOSFET
HEXFET® Power MOSFET
VDSS
Applications
High frequency DC-DC converters
l
Benefits
l Low Gate to Drain Charge to Reduce
Switching Losses
l Fully Characterized Capacitance Including
Effective COSS to Simplify Design, (See
App. Note AN1001)
l Fully Characterized Avalanche Voltage
and Current
300V
RDS(on) max
ID
0.40W@VGS = 10V
1.6A
A
A
D
1
8
S
2
7
D
S
3
6
D
4
5
D
S
G
SO-8
Top View
Absolute Maximum Ratings
Parameter
ID @ TA = 25°C
ID @ TA = 70°C
IDM
PD @TA = 25°C
VGS
dv/dt
TJ
TSTG
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation„
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery dv/dt †
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Max.
Units
1.6
1.3
13
2.5
0.02
± 30
8.9
-55 to + 150
A
W
W/°C
V
V/ns
°C
300 (1.6mm from case )
Thermal Resistance
Symbol
RθJL
RθJA
Parameter
Junction-to-Drain Lead
Junction-to-Ambient „
Typ.
Max.
Units
–––
–––
20
50
°C/W
Notes  through † are on page 8
www.irf.com
1
4/2/02
IRF3000
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
V(BR)DSS
IDSS
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Min.
300
–––
–––
3.0
–––
–––
–––
–––
Typ.
–––
0.38
0.34
–––
–––
–––
–––
–––
Max. Units
Conditions
–––
V
VGS = 0V, ID = 250µA
––– V/°C Reference to 25°C, ID = 1mA ƒ
0.40
Ω
VGS = 10V, ID = 0.96A ƒ
5.0
V
VDS = VGS, ID = 250µA
25
VDS = 300V, VGS = 0V
µA
250
VDS = 240V, VGS = 0V, TJ = 150°C
100
VGS = 30V
nA
-100
VGS = -30V
Dynamic @ TJ = 25°C (unless otherwise specified)
gfs
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min.
2.0
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
22
4.7
11
8.2
7.2
23
23
730
100
20
940
39
87
Max. Units
Conditions
–––
S
VDS = 50V, ID = 0.96A
33
ID = 0.96A
7.1
nC
VDS = 240V
17
VGS = 10V,
–––
VDD = 150V
–––
ID = 0.96A
ns
–––
RG = 2.2Ω
–––
VGS = 10V ƒ
–––
VGS = 0V
–––
VDS = 25V
–––
pF
ƒ = 1.0MHz
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 240V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 0V to 240V …
Avalanche Characteristics
Parameter
EAS
IAR
Single Pulse Avalanche Energy‚
Avalanche Current
Typ.
Max.
Units
–––
–––
47
1.9
mJ
A
Diode Characteristics
IS
ISM
VSD
trr
Qrr
2
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Min. Typ. Max. Units
–––
–––
1.6
–––
–––
13
–––
–––
–––
–––
86
250
1.5
130
380
A
V
ns
nC
Conditions
MOSFET symbol
showing the
G
integral reverse
p-n junction diode.
TJ = 25°C, IS = 0.96A, VGS = 0V
TJ = 25°C, IF = 0.96A
di/dt = 100A/µs ƒ
D
S
ƒ
www.irf.com
IRF3000
100
100
VGS
15V
12V
10V
8.0V
7.0V
6.5V
6.0V
BOTTOM 5.5V
VGS
15V
12V
10V
8.0V
7.0V
6.5V
6.0V
BOTTOM 5.5V
10
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
1
5.5V
0.1
10
5.5V
1
20µs PULSE WIDTH
Tj = 25°C
20µs PULSE WIDTH
Tj = 150°C
0.01
0.1
0.1
1
10
100
0.1
1
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
100
Fig 2. Typical Output Characteristics
100.0
2.5
I D = 1.6A
T J = 150°C
10.0
T J = 25°C
1.0
VDS = 50V
20µs PULSE WIDTH
0.1
5.0
6.0
7.0
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
8.0
(Normalized)
2.0
RDS(on) , Drain-to-Source On Resistance
ID, Drain-to-Source Current ( A)
10
VDS, Drain-to-Source Voltage (V)
1.5
1.0
0.5
V GS = 10V
0.0
-60
-40
-20
0
20
40
60
TJ, Junction Temperature
80
100
120
140
160
( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRF3000
10000
C, Capacitance (pF)
20
VGS = 0V,
f = 1 MHZ
C iss
= C gs + Cgd ,
SHORTED
ID= 0.96A
C ds
VGS , Gate-to-Source Voltage (V)
100000
Crss = Cgd
Coss = Cds + Cgd
1000
Ciss
100
Coss
Crss
10
VDS= 240V
VDS= 150V
VDS= 60V
16
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 14
0
1
1
10
100
0
1000
5
10
15
20
25
30
Q G Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
100.0
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
10.0
TJ = 150°C
1.0
T J = 25°C
VGS = 0V
0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
VSD, Source-toDrain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
10
100µsec
1
0.1
1.8
1msec
Tc = 25°C
Tj = 150°C
Single Pulse
1
10
10msec
100
1000
10000
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF3000
2.0
VDS
VGS
1.6
D.U.T.
RG
I D , Drain Current (A)
RD
+
-V DD
1.2
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
0.8
Fig 10a. Switching Time Test Circuit
0.4
VDS
90%
0.0
25
50
75
100
125
150
( °C)
TC , Case Temperature
10%
VGS
Fig 9. Maximum Drain Current Vs.
Ambient Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
100
(Z thJA)
D = 0.50
0.20
10
0.10
Thermal Response
0.05
0.02
1
0.01
P DM
SINGLE PULSE
(THERMAL RESPONSE)
t1
0.1
t2
Notes:
1. Duty factor D =
2. Peak T
0.01
0.00001
0.0001
0.001
0.01
0.1
t1/ t 2
J = P DM x Z thJA
1
+T A
10
100
t 1, Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
RDS(on) , Drain-to -Source On Resistance ( Ω)
IRF3000
RDS (on) , Drain-to-Source On Resistance ( Ω)
0.50
0.46
0.42
VGS = 10V
0.38
0.34
0
2
4
6
8
10
12
0.80
0.70
0.60
0.50
ID = 0.96A
0.40
0.30
6
14
8
10
12
14
16
VGS, Gate -to -Source Voltage (V)
ID , Drain Current (A)
Fig 12. On-Resistance Vs. Drain Current
Fig 13. On-Resistance Vs. Gate Voltage
Current Regulator
Same Type as D.U.T.
QG
VGS
50KΩ
12V
.2µF
QGS
.3µF
D.U.T.
QGD
100
+
V
- DS
ID
VG
TOP
VGS
3mA
Charge
80
ID
EAS , Single Pulse Avalanche Energy (mJ)
IG
Current Sampling Resistors
Fig 14a&b. Basic Gate Charge Test Circuit
and Waveform
15V
V(BR)DSS
tp
L
VDS
D.U.T
RG
IAS
20V
I AS
tp
DRIVER
+
V
- DD
0.01Ω
Fig 15a&b. Unclamped Inductive Test circuit
and Waveforms
6
A
BOTTOM
0.9A
1.5A
1.9A
60
40
20
0
25
50
75
100
125
Starting T , Junction
Temperature
J
150
( °C)
Fig 15c. Maximum Avalanche Energy
Vs. Drain Current
www.irf.com
IRF3000
SO-8 Package Details
D
DIM
B
5
A
8
7
6
5
H
E
0.25 [.010]
1
2
3
A
4
MIN
.0532
.0688
1.35
1.75
A1 .0040
.0098
0.10
0.25
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
E
.1497
.1574
3.80
4.00
e
.050 BAS IC
1.27 BASIC
e1
6X
e
e1
C
.025 BAS IC
0.635 BAS IC
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
y
0.10 [.004]
0.25 [.010]
MAX
K x 45°
A
A1
8X b
MILLIMET ERS
MAX
A
6
INCHES
MIN
8X L
8X c
7
C A B
FOOT PRINT
NOTES:
1. DIMENSIONING & T OLERANCING PER ASME Y14.5M-1994.
8X 0.72 [.028]
2. CONT ROLLING DIMENSION: MILLIMETER
3. DIMENSIONS ARE S HOWN IN MILLIMET ERS [INCHES].
4. OUT LINE CONFORMS T O JEDEC OUT LINE MS -012AA.
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS .
MOLD PROTRUSIONS NOT T O EXCEED 0.15 [.006].
6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS .
MOLD PROTRUSIONS NOT T O EXCEED 0.25 [.010].
6.46 [.255]
7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO
A S UBS TRATE.
3X 1.27 [.050]
8X 1.78 [.070]
SO-8 Part Marking
EXAMPLE: THIS IS AN IRF7101 (MOSFET)
INTERNAT IONAL
RECTIFIER
LOGO
www.irf.com
YWW
XXXX
F7101
DAT E CODE (YWW)
Y = LAST DIGIT OF T HE YEAR
WW = WEEK
LOT CODE
PART NUMBER
7
IRF3000
SO-8 Tape and Reel
TERMINAL NUMBER 1
12.3 ( .484 )
11.7 ( .461 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00
(12.992)
MAX.
14.40 ( .566 )
12.40 ( .488 )
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
„ When mounted on 1 inch square copper board
… Coss eff. is a fixed capacitance that gives the same charging time
‚ Starting TJ = 25°C, L = 26mH
as Coss while VDS is rising from 0 to 80% VDSS
R G = 25Ω, IAS = 1.9A.
ƒ Pulse width ≤ 300µs; duty cycle ≤ 2%.
† ISD ≤ 0.96A, di/dt ≤ 170A/µs, VDD ≤ V(BR)DSS,
T J ≤ 150°C
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.4/02
8
www.irf.com