IRF IRF7495

PD - 94683B
IRF7495
HEXFET® Power MOSFET
Applications
l High frequency DC-DC converters
VDSS
RDS(on) max
ID
100V
22m @VGS = 10V
7.3A
Benefits
l Low Gate to Drain Charge to Reduce
Switching Losses
l Fully Characterized Capacitance Including
Effective COSS to Simplify Design, (See
App. Note AN1001)
l Fully Characterized Avalanche Voltage
and Current
:
A
A
D
1
8
S
2
7
D
S
3
6
D
G
4
5
D
S
SO-8
Top View
Absolute Maximum Ratings
Max.
Units
VDS
Drain-to-Source Voltage
Parameter
100
V
VGS
Gate-to-Source Voltage
± 20
ID @ TA = 25°C
Continuous Drain Current, VGS @ 10V
7.3
ID @ TA = 100°C
Continuous Drain Current, VGS @ 10V
4.6
IDM
Pulsed Drain Current
PD @TA = 25°C
Maximum Power Dissipation
2.5
W
Linear Derating Factor
0.02
W/°C
7.3
-55 to + 150
V/ns
°C
c
A
58
h
dv/dt
TJ
Peak Diode Recovery dv/dt
Operating Junction and
TSTG
Storage Temperature Range
Thermal Resistance
Parameter
RθJL
RθJA
Junction-to-Drain Lead
Junction-to-Ambient (PCB Mount)
e
Typ.
Max.
Units
–––
20
°C/W
–––
50
Notes  through † are on page 8
www.irf.com
1
09/23/03
IRF7495
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
V(BR)DSS
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ
RDS(on)
VGS(th)
Gate Threshold Voltage
IDSS
Drain-to-Source Leakage Current
–––
–––
250
IGSS
Gate-to-Source Forward Leakage
–––
–––
200
Gate-to-Source Reverse Leakage
–––
–––
-200
V
Conditions
100
–––
–––
VGS = 0V, ID = 250µA
Breakdown Voltage Temp. Coefficient
–––
0.10
–––
V/°C Reference to 25°C, ID = 1mA
Static Drain-to-Source On-Resistance
–––
18
22
mΩ
2.0
–––
4.0
V
VDS = VGS, ID = 250µA
–––
–––
20
µA
VDS = 100V, VGS = 0V
VGS = 10V, ID = 4.4A
f
VDS = 80V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
Dynamic @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Forward Transconductance
Qgs
Gate-to-Source Charge
–––
6.3
–––
Qgd
Gate-to-Drain ("Miller") Charge
–––
11.7
–––
VGS = 10V
td(on)
Turn-On Delay Time
–––
8.7
–––
VDD = 50V
tr
Rise Time
–––
13
–––
td(off)
Turn-Off Delay Time
–––
10
–––
tf
Fall Time
–––
36
–––
VGS = 10V
Ciss
Input Capacitance
–––
1530
–––
VGS = 0V
Coss
Output Capacitance
–––
250
–––
Crss
Reverse Transfer Capacitance
–––
110
–––
Coss
Output Capacitance
–––
980
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss
Output Capacitance
–––
160
–––
VGS = 0V, VDS = 80V, ƒ = 1.0MHz
Coss eff.
Effective Output Capacitance
–––
240
–––
VGS = 0V, VDS = 0V to 80V
Total Gate Charge
11
–––
–––
–––
34
51
S
Conditions
gfs
Qg
VDS = 25V, ID = 4.4A
ID = 4.4A
nC
VDS = 50V
f
ID = 4.4A
ns
RG = 6.2Ω
f
VDS = 25V
pF
ƒ = 1.0MHz
g
Avalanche Characteristics
EAS
Parameter
Single Pulse Avalanche Energy
IAR
Avalanche Current
c
d
Typ.
–––
Max.
180
Units
mJ
–––
4.4
A
Diode Characteristics
Parameter
Min. Typ. Max. Units
Conditions
IS
Continuous Source Current
–––
–––
2.3
ISM
(Body Diode)
Pulsed Source Current
–––
–––
58
showing the
integral reverse
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
1.3
V
p-n junction diode.
TJ = 25°C, IS = 4.4A, VGS = 0V
trr
Reverse Recovery Time
–––
42
–––
ns
Qrr
Reverse Recovery Charge
–––
73
–––
nC
ton
Forward Turn-On Time
2
c
MOSFET symbol
A
D
G
S
f
TJ = 25°C, IF = 4.4A, VDD = 25V
di/dt = 100A/µs
f
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRF7495
100
100
BOTTOM
VGS
15V
10V
8.0V
5.0V
4.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
4.5V
10
4.5V
10
20µs PULSE WIDTH
Tj = 25°C
20µs PULSE WIDTH
Tj = 150°C
1
1
0.1
1
10
100
0.1
1000
1
10
100
1000
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (Α)
BOTTOM
VGS
15V
10V
8.0V
5.0V
4.5V
T J = 150°C
10
T J = 25°C
1
VDS = 50V
20µs PULSE WIDTH
0.1
ID = 7.3A
VGS = 10V
2.0
1.5
1.0
0.5
2
3
4
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
5
-60 -40 -20 0
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 4. Normalized On-Resistance
vs. Temperature
3
IRF7495
100000
12.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
C oss = C ds + C gd
10000
C, Capacitance(pF)
ID= 4.4A
Ciss
1000
Coss
Crss
100
VDS= 80V
VDS= 50V
10.0
VDS= 20V
8.0
6.0
4.0
2.0
0.0
10
1
10
100
0
VDS, Drain-to-Source Voltage (V)
100.00
30
40
1000
10.00
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
20
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
TJ = 150°C
1.00
T J = 25°C
0.10
10
100µsec
1msec
1
T A = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
0.01
10msec
0.1
0.0
0.2
0.4
0.6
0.8
1.0
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
10
QG Total Gate Charge (nC)
0
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF7495
8
RD
VDS
7
ID, Drain Current (A)
VGS
6
D.U.T.
RG
+
-V DD
5
10V
4
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
3
Fig 10a. Switching Time Test Circuit
2
VDS
1
90%
0
25
50
75
100
125
150
T A , Ambient Temperature (°C)
10%
VGS
Fig 9. Maximum Drain Current vs.
Ambient Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
100
Thermal Response ( Z thJA )
D = 0.50
0.20
10
0.10
0.05
0.02
0.01
1
0.1
SINGLE PULSE
( THERMAL RESPONSE )
0.01
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
RDS(on) , Drain-to -Source On Resistance (mΩ)
RDS (on) , Drain-to-Source On Resistance (m Ω)
IRF7495
25
20
VGS = 10V
15
10
0
10
20
30
40
50
60
50
40
30
20
ID = 4.4A
10
2
70
ID , Drain Current (A)
VCC
QGS
VG
Charge
Fig 14a&b. Basic Gate Charge Test Circuit
and Waveform
15V
V(BR)DSS
L
VDS
D.U.T
RG
IAS
20V
I AS
tp
DRIVER
+
V
- DD
0.01Ω
Fig 15a&b. Unclamped Inductive Test circuit
and Waveforms
6
7
8
9 10 11 12 13 14 15 16
500
QGD
0
tp
6
Fig 13. On-Resistance vs. Gate Voltage
EAS , Single Pulse Avalanche Energy (mJ)
DUT
5
QG
VGS
1K
4
VGS, Gate -to -Source Voltage (V)
Fig 12. On-Resistance vs. Drain Current
L
3
ID
2.0A
3.5A
BOTTOM 4.4A
TOP
400
300
200
100
0
A
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 15c. Maximum Avalanche Energy
vs. Drain Current
www.irf.com
IRF7495
SO-8 Package Details
D
DIM
B
5
A
8
6
7
6
H
E
1
2
3
0.25 [.010]
4
A
MIN
.0532
.0688
1.35
1.75
A1 .0040
.0098
0.10
0.25
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
E
.1497
.1574
3.80
4.00
e
.050 BAS IC
1.27 BASIC
e1
6X
e
e1
MAX
.025 BAS IC
0.635 BAS IC
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
K x 45°
C
A1
8X b
0.25 [.010]
A
MILLIMET ERS
MAX
A
5
INCHES
MIN
y
0.10 [.004]
8X L
8X c
7
C A B
FOOT PRINT
NOTES:
1. DIMENSIONING & T OLERANCING PER ASME Y14.5M-1994.
8X 0.72 [.028]
2. CONT ROLLING DIMENSION: MILLIMETER
3. DIMENSIONS ARE S HOWN IN MILLIMET ERS [INCHES].
4. OUT LINE CONFORMS T O JEDEC OUT LINE MS -012AA.
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS .
MOLD PROTRUSIONS NOT T O EXCEED 0.15 [.006].
6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS .
MOLD PROTRUSIONS NOT T O EXCEED 0.25 [.010].
6.46 [.255]
7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO
A S UBS TRATE.
3X 1.27 [.050]
8X 1.78 [.070]
SO-8 Part Marking
EXAMPLE: THIS IS AN IRF7101 (MOSFET)
INTERNAT IONAL
RECTIFIER
LOGO
www.irf.com
YWW
XXXX
F7101
DAT E CODE (YWW)
Y = LAST DIGIT OF T HE YEAR
WW = WEEK
LOT CODE
PART NUMBER
7
IRF7495
SO-8 Tape and Reel
TERMINAL NUMBER 1
12.3 ( .484 )
11.7 ( .461 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00
(12.992)
MAX.
14.40 ( .566 )
12.40 ( .488 )
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 19mH
RG = 25Ω, IAS = 4.4A.
ƒ When mounted on 1 inch square copper
board, t ≤ 10 sec.
„ Pulse width ≤ 400µs; duty cycle ≤ 2%.
… Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
† ISD ≤ 5.8A, di/dt ≤ 250A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.09/03
8
www.irf.com