IRF CPV364M4K

PD- 5.042
CPV364M4K
PRELIMINARY
Short Circuit Rated UltraFast IGBT
IGBT SIP MODULE
Features
1
• Short Circuit Rated UltraFast: Optimized for high
operating frequencies >5.0 kHz , and Short Circuit
Rated to 10µs @ 125°C, VGE = 15V
• Fully isolated printed circuit board mount package
• Switching-loss rating includes all "tail" losses
• HEXFREDTM soft ultrafast diodes
• Optimized for high operating frequency (over 5kHz)
See Fig. 1 for Current vs. Frequency curve
3
D1
Q1
9
D3
Q3
4
6
D2
Q2
12
D5
Q5
15
10
D4
Q4
7
18
16
D6
Q6
13
19
Product Summary
Output Current in a Typical 20 kHz Motor Drive
11 ARMS per phase (3.1 kW total) with TC = 90°C, T J = 125°C, Supply Voltage 360Vdc,
Power Factor 0.8, Modulation Depth 115% (See Figure 1)
Description
The IGBT technology is the key to International Rectifier's advanced line of
IMS (Insulated Metal Substrate) Power Modules. These modules are more
efficient than comparable bipolar transistor modules, while at the same time
having the simpler gate-drive requirements of the familiar power MOSFET.
This superior technology has now been coupled to a state of the art materials
system that maximizes power throughput with low thermal resistance. This
package is highly suited to motor drive applications and where space is at a
premium.
IMS-2
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
tsc
VGE
VISOL
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Short Circuit Withstand Time
Gate-to-Emitter Voltage
Isolation Voltage, any terminal to case, 1 min
Maximum Power Dissipation, each IGBT
Maximum Power Dissipation, each IGBT
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting torque, 6-32 or M3 screw.
Max.
Units
600
24
13
48
48
9.3
±20
2500
63
25
-55 to +150
V
A
µs
V
VRMS
W
°C
300 (0.063 in. (1.6mm) from case)
5-7 lbf•in ( 0.55-0.8 N•m)
Thermal Resistance
Parameter
RθJC (IGBT)
RθJC (DIODE)
RθCS (MODULE)
Wt
Junction-to-Case, each IGBT, one IGBT in conduction
Junction-to-Case, each diode, one diode in conduction
Case-to-Sink, flat, greased surface
Weight of module
Typ.
Max.
–––
–––
0.10
20 (0.7)
2.0
3.0
–––
–––
Units
°C/W
g (oz)
7/18/97
CPV364M4K
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
VFM
IGES
Parameter
Min.
Collector-to-Emitter Breakdown Voltageƒ 600
Temperature Coeff. of Breakdown Voltage –––
Collector-to-Emitter Saturation Voltage –––
–––
–––
Gate Threshold Voltage
3.0
Temperature Coeff. of Threshold Voltage –––
Forward Transconductance „
11
Zero Gate Voltage Collector Current
–––
–––
Diode Forward Voltage Drop
–––
–––
Gate-to-Emitter Leakage Current
–––
Typ.
–––
0.63
1.80
1.80
1.56
–––
-13
18
–––
–––
1.3
1.2
–––
Max. Units
Conditions
–––
V
VGE = 0V, IC = 250µA
––– V/°C VGE = 0V, IC = 1.0mA
2.3
IC = 13A
VGE = 15V
See Fig. 2, 5
–––
V
IC = 24A
–––
IC = 13A, TJ = 150°C
6.0
VCE = VGE , IC = 250µA
––– mV/°C VCE = VGE , IC = 250µA
–––
S
VCE = 100V, IC = 10A
250
µA
VGE = 0V, VCE = 600V
3500
VGE = 0V, VCE = 600V, TJ = 150°C
1.7
V
IC = 15A
See Fig. 13
1.6
IC = 15A, TJ = 150°C
±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Q ge
Q gc
t d(on)
tr
t d(off)
tf
Eon
Eoff
Ets
t sc
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Short Circuit Withstand Time
t d(on)
tr
t d(off)
tf
Ets
LE
Cies
Coes
Cres
t rr
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
I rr
Diode Peak Reverse Recovery Current
Q rr
Diode Reverse Recovery Charge
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During t b
Min.
—
—
—
—
—
—
—
—
—
—
10
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ. Max. Units
Conditions
110 170
IC = 13A
14
21
nC VCC = 400V
See Fig.8
49
74
VGE = 15V
50
—
30
—
TJ = 25°C
ns
110 170
IC = 13A, VCC = 480V
91 140
VGE = 15V, RG = 10Ω
0.56 —
Energy losses include "tail"
0.28 —
mJ and diode reverse recovery
0.84 1.1
See Fig. 9,10, 18
—
—
µs
VCC = 360V, TJ = 125°C
VGE = 15V, RG = 10Ω , VCPK < 500V
47
—
TJ = 150°C,
See Fig. 11,18
30
—
IC = 13A, VCC = 480V
ns
250
—
VGE = 15V, RG = 10Ω
150
—
Energy losses include "tail"
1.28 —
mJ and diode reverse recovery
7.5
—
nH Measured 5mm from package
1600 —
VGE = 0V
130
—
pF
VCC = 30V
See Fig. 7
55
—
ƒ = 1.0MHz
42
60
ns
TJ = 25°C See Fig.
14
IF = 15A
74 120
TJ = 125°C
4.0
6.0
A
TJ = 25°C See Fig.
15
VR = 200V
6.5
10
TJ = 125°C
80 180
nC
TJ = 25°C See Fig.
220 600
TJ = 125°C
16
di/dt = 200Aµs
188
—
A/µs TJ = 25°C See Fig.
160
—
TJ = 125°C
17
CPV364M4K
5.27
18
T c = 9 0° C
T j = 1 25 ° C
P ow er F ac tor = 0 .8
M o d ula tio n D ep th = 1 .15
V c c = 50 % o f R a ted V o lta g e
LOAD CURRENT (A)
14
4.68
4.10
12
3.51
10
2.93
2.34
8
1.76
6
4
1.17
2
0.59
Total Output Power (kW)
16
0.00
0
0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
TJ = 150 °C
10
TJ = 25 °C
V GE = 15V
20µs PULSE WIDTH
1
1
10
V CE, Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
I C, Collector-to-Emitter Current (A)
I C, Collector-to-Emitter Current (A)
100
TJ = 150 °C
10
TJ = 25 °C
VCC = 50V
5µs PULSE WIDTH
1
5
6
7
8
9
VGE, Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
10
CPV364M4K
4.0
V GE = 1 5 V
VCE, Collector-to-Emitter Voltage(V)
M a xim um D C C ollecto r C urre nt (A )
25
20
15
10
5
A
0
25
50
75
100
125
3.0
I C = 26A
2.0
I C = 13A
I C = 6.5A
1.0
-60 -40 -20
150
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
TC , C ase Te m peratu re (°C )
Fig. 4 - Maximum Collector Current vs.
Case Temperature
VGE = 15V
80 us PULSE WIDTH
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
T herm al R espon se (Z thJC )
10
1
D = 0.50
0.20
0.10
PD M
0.05
0 .1
t
0.02
0.01
0.01
0.0000 1
1
t2
S INGLE PULSE
( TH ERMA L RES PO NSE )
Notes :
1. D uty fac tor D = t
1
/ t
2
2. P ea k TJ = P D M x Z thJ C + T C
0.0001
0.001
0 .01
0 .1
1
t 1 , R e ct an gu la r P uls e D ura tio n (se c )
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
10
CPV364M4K
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
C, Capacitance (pF)
2500
2000
Cies
1500
1000
500
Coes
Cres
20
V GE, Gate-to-Emitter Voltage (V)
3000
16
12
8
4
0
0
1
10
0
100
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
40
60
80
100
120
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
10
VCC = 480V
VGE = 15V
TJ = 25 °C
I C = 13A
Total Switching Losses (mJ)
Total Switching Losses (mJ)
20
Q G, Total Gate Charge (nC)
VCE , Collector-to-Emitter Voltage (V)
1.5
VCC = 400V
I C = 13A
1.0
0.5
10Ω
RG = Ohm
VGE = 15V
VCC = 480V
IC = 26A
IC = 13A
1
IC = 6.5A
0.1
0
10
20
30
40
RGR,GGate
Resistance
, Gate
Resistance(Ohm)
(Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
50
-60 -40 -20
0
20
40
60
80 100 120 140 160
T J, Junction Temperature ( °C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
CPV364M4K
1000
10Ω
= Ohm
= 150 ° C
= 480V
= 15V
I C , C olle ctor-to-E m itter C u rrent (A )
RG
TJ
VCC
VGE
3.0
2.0
1.0
0.0
0
5
10
15
20
25
V GE = 2 0 V
TJ = 125°C
100
S AF E O P ER AT IN G AR EA
10
A
1
30
1
I C , Collector-to-emitter Current (A)
10
100
VC E , C ollector-to -E m itter V oltage (V )
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
100
Inst antan eous F orw ard C urrent - I F (A )
Total Switching Losses (mJ)
4.0
10
TJ = 15 0°C
TJ = 12 5°C
TJ = 2 5°C
1
0.8
1.2
1.6
2.0
F orwa rd V olta ge D rop - V FM (V )
2.4
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
1000
CPV364M4K
100
100
VR = 2 0 0 V
T J = 1 2 5 °C
TJ = 2 5 ° C
V R= 200V
T J = 125°C
T J = 25°C
80
I IR R M - (A )
t rr - (ns)
I F = 30A
I F = 30A
60
I F = 15A
IF = 15 A
10
I F = 5 .0A
40
I F = 5.0A
20
100
di f/dt - (A/µs)
1
100
1000
1000
di f /dt - (A / µs)
Fig. 14 - Typical Reverse Recovery vs. dif/dt
Fig. 15 - Typical Recovery Current vs. dif/dt
800
1000
VR = 2 0 0 V
T J = 1 2 5 °C
TJ = 2 5 ° C
VR = 2 0 0 V
T J = 1 2 5 °C
TJ = 2 5 ° C
di(re c)M /dt - (A / µs)
600
Q R R - (nC )
I F = 3 0A
400
I F = 15A
IF = 5.0A
I F = 5 .0 A
I F = 1 5A
I F = 3 0A
200
0
100
di f /d t - (A /µs )
Fig. 16 - Typical Stored Charge vs. dif/dt
1000
100
100
1000
d i f /dt - (A /µs)
Fig. 17 - Typical di(rec)M /dt vs. dif /dt
CPV364M4K
90% Vge
+ Vg e
Same t ype
device as
D.U.T.
V ce
Ic
90% Ic
10 % Vc e
Ic
5% Ic
430µF
80%
of Vce
D.U.T.
td (off)
tf
∫
E off =
t1 +5µ S
V ce ic d t
t1
Fig. 18a - Test Circuit for Measurement of
ILM, Eon , Eoff(diode), t rr, Qrr, Irr, t d(on), t r, t d(off), t f
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G ATE VO LTA G E D .U .T.
1 0% +V g
trr
Q rr =
Ic
∫
trr
id dt
tx
+V g
tx
10% V cc
10 % Ir r
V cc
DUT V O LTA G E
AN D C URR E NT
V ce
Vcc
V pk
Irr
10% Ic
9 0% Ic
td( on)
tr
Ipk
Ic
DIO DE RE CO V E RY
W AV E FO RM S
5% Vc e
t1
∫
t2
E on = V c e ie dt
t1
t2
Er ec =
DIO D E RE V E RS E
RE C O V ER Y EN ER G Y
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon , td(on), tr
∫
t4
V d id d t
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Q rr, Irr
CPV364M4K
V g G ATE S IG N AL
DE VICE UNDE R TE S T
CURR EN T D .U .T.
VO L TA G E IN D.U.T.
CURR EN T IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
10 00V
V c*
RL =
480V
4 X I C @25°C
0 - 480V
50V
60 00µ F
100 V
Figure 19. Clamped Inductive Load Test
Circuit
Figure 20. Pulsed Collector Current
Test Circuit
CPV364M4K
Notes:
 Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
‚ VCC=80%(VCES), VGE=20V, L=10µH, RG = 10Ω (Figure 19)
ƒ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
„ Pulse width 5.0µs, single shot.
Case Outline — IMS-2
3.91 ( .154)
2X
62.43 (2.458)
7.87 (.310)
53.85 ( 2.120)
5.46 ( .215)
21.97 (.865)
1
2
3
4
5
6
7
8
9 10 1 1 1 2 13 14 1 5 1 6 17 18 19
0.38 (.015)
NO TE S:
1. Tolerance unless otherwis e
spec ified ± 0.254 (.010) .
2. Controlling D imension: Inch.
3. Dimens ions ar e shown in
Millimeter ( Inc hes) .
4. Term inal numbers are shown
for refer enc e only.
3.94 (.155)
1.27 ( .050)
4.06 ± 0.51
(.160 ± .020)
5.08 (.200)
6X
1.27 (.050)
13X
2.54 (.100)
6X
3.05 ± 0.38
(.120 ± .015)
0.76 (.030)
13X
0.51 (.020)
6.10 (.240)
IMS-2 Package Outline (13 Pins)
D im e n s io n s in M illim e te rs a n d (In c h e s)
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371
http://www.irf.com/
Data and specifications subject to change without notice.
7/97