IRF IRG4PH30

PD- 91579A
IRG4PH30KD
Short Circuit Rated
UltraFast IGBT
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
C
Features
• High short circuit rating optimized for motor control,
tsc =10µs, VCC = 720V , TJ = 125°C,
VGE = 15V
• Combines low conduction losses with high
switching speed
• Tighter parameter distribution and higher efficiency
than previous generations
• IGBT co-packaged with HEXFREDTM ultrafast,
ultrasoft recovery antiparallel diodes
VCES = 1200V
VCE(on) typ. = 3.10V
G
@VGE = 15V, IC = 10A
E
n-ch an nel
Benefits
• Latest generation 4 IGBT's offer highest power density
motor controls possible
• HEXFREDTM diodes optimized for performance with IGBTs.
Minimized recovery characteristics reduce noise, EMI and
switching losses
• This part replaces IRGPH30MD2 products
• For hints see design tip 97003
TO-247AC
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
tsc
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current Q
Clamped Inductive Load Current R
Diode Continuous Forward Current
Diode Maximum Forward Current
Short Circuit Withstand Time
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw.
Max.
Units
1200
20
10
40
40
10
40
10
± 20
100
42
-55 to +150
V
A
µs
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1 N•m)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
Min.
Typ.
Max.
–––
–––
–––
–––
–––
–––
–––
0.24
–––
6 (0.21)
1.2
2.5
–––
40
–––
Units
°C/W
g (oz)
1
2/7/2000
IRG4PH30KD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
VFM
IGES
Parameter
Min. Typ.
Collector-to-Emitter Breakdown VoltageS 1200 —
Temperature Coeff. of Breakdown Voltage — 0.19
Collector-to-Emitter Saturation Voltage
— 3.10
— 3.90
— 3.01
Gate Threshold Voltage
3.0
—
Temperature Coeff. of Threshold Voltage
—
-12
Forward Transconductance T
4.3 6.5
Zero Gate Voltage Collector Current
—
—
—
—
Diode Forward Voltage Drop
—
3.4
—
3.3
Gate-to-Emitter Leakage Current
—
—
Max. Units
Conditions
—
V
VGE = 0V, IC = 250µA
— V/°C VGE = 0V, IC = 1.0mA
4.2
IC = 10A
VGE = 15V
—
V
IC = 20A
See Fig. 2, 5
—
IC = 10A, TJ = 150°C
6.0
VCE = VGE , IC = 250µA
— mV/°C VCE = VGE , IC = 250µA
—
S
VCE = 100V, IC = 10A
250
µA
VGE = 0V, VCE = 1200V
3500
VGE = 0V, VCE = 1200V, TJ = 150°C
3.8
V
IC = 10A
See Fig. 13
3.7
IC = 10A, TJ = 150°C
±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
tsc
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Short Circuit Withstand Time
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
trr
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Current
Qrr
Diode Reverse Recovery Charge
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
2
Min.
—
—
—
—
—
—
—
—
—
—
10
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ. Max. Units
Conditions
53
80
IC = 10A
9.0
14
nC
VCC = 400V
See Fig.8
21
32
VGE = 15V
39
—
84
—
TJ = 25°C
ns
220 340
IC = 10A, VCC = 800V
90 140
VGE = 15V, R G = 23Ω
0.95 —
Energy losses include "tail"
1.15 —
mJ and diode reverse recovery
2.10 2.6
See Fig. 9,10,18
—
—
µs
VCC = 720V, TJ = 125°C
VGE = 15V, RG = 5.0Ω
42
—
TJ = 150°C,
See Fig. 10,11,18
79
—
IC = 10A, VCC = 800V
ns
540
—
VGE = 15V, R G = 23Ω,
97
—
Energy losses include "tail"
3.5
—
mJ and diode reverse recovery
13
—
nH Measured 5mm from package
800
—
VGE = 0V
60
—
pF
VCC = 30V
See Fig. 7
14
—
ƒ = 1.0MHz
50
76
ns
TJ = 25°C See Fig.
72 110
TJ = 125°C
14
I F = 10A
4.4 7.0
A
TJ = 25°C See Fig.
5.9 8.8
TJ = 125°C
15
VR = 200V
130 200
nC
TJ = 25°C See Fig.
250 380
TJ = 125°C
16
di/dt = 200A/µs
210
—
A/µs TJ = 25°C See Fig.
180
—
TJ = 125°C
17
www.irf.com
IRG4PH30KD
15
LOAD CURRENT (A)
F o r b o th :
D u ty c y c le : 5 0 %
TJ = 1 2 5 ° C
T sink = 9 0 ° C
G a te d riv e a s s p e c ifie d
P o w e r D is s ip a tio n = 24 W
10
S q u a re w a v e :
6 0% of rate d
volta ge
I
5
Id e a l d io d e s
0
0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
I C , Collector-to-Emitter Current (A)
10
TJ = 150 °C
TJ = 25 °C
V
= 15V
20µs PULSE WIDTH
GE
1
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
I C , Collector-to-Emitter Current (A)
100
100
10
TJ = 150 ° C
TJ = 25 °C
V
= 50V
5µs PULSE WIDTH
CC
1
6
8
10
12
14
VGE, Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4PH30KD
5.0
20
V
= 15V
80 us PULSE WIDTH
VCE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current(A)
GE
15
10
5
0
25
50
75
100
125
150
4.5
IC = 20 A
4.0
3.5
IC = 10 A
3.0
IC = 5 A
2.5
2.0
-60 -40 -20
TC , Case Temperature ( °C)
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( ° C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
10
1
D = 0.50
0.20
P DM
0.10
0.1
0.05
0.02
0.01
0.01
0.00001
t1
t2
SINGLE PULSE
(THERMAL RESPONSE)
0.0001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4PH30KD
1000
C, Capacitance (pF)
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
Cies
800
600
400
Coes
200
20
VGE , Gate-to-Emitter Voltage (V)
1200
VCC = 400V
I C = 10A
15
10
5
Cres
0
1
10
0
100
0
VCE , Collector-to-Emitter Voltage (V)
100
V CC = 800V
V GE = 15V
TJ = 25 ° C
I C = 10A
2.2
2.1
2.0
0
10
20
30
40
, Gate
Resistance
RGRG
, Gate
Resistance
( Ω )(Ohm)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
30
40
50
60
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Total Switching Losses (mJ)
Total Switching Losses (mJ)
2.3
20
Q G , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
2.4
10
50
RG
= Ohm
23Ω
G =
VGE = 15V
VCC = 800V
IC = 20 A
10
IC = 10 A
IC = 5 A
1
0.1
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4PH30KD
I C , Collector Current (A)
6.0
100
RG
23Ohm
Ω
G= =
T J = 150 °C
VCC = 800V
VGE = 15V
4.0
2.0
VGE = 20V
T J = 125 oC
10
SAFE OPERATING AREA
0.0
0
5
10
15
1
20
1
I C , Collector Current (A)
10
100
1000
10000
VCE , Collector-to-Emitter Voltage (V)
Fig. 12 - Turn-Off SOA
Fig. 11 - Typical Switching Losses vs.
Collector Current
100
Instantaneous Forward Current ( A )
Total Switching Losses (mJ)
8.0
10
T J = 150°C
T J = 125°C
T = 25°C
J
1
0.0
2.0
4.0
6.0
8.0
F orward V oltage D rop - V F M (V )
Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4PH30KD
100
100
V R = 20 0V
T J = 1 2 5°C
T J = 2 5 °C
I F = 20A
I F = 10A
I F = 20A
I F = 5.0A
IF = 10A
IF = 5.0A
IIRRM - ( A )
trr- ( ns)
80
60
10
40
VR = 2 00 V
T J = 1 2 5°C
T J = 2 5 °C
20
100
di f /dt - (A/µ s)
1
100
1000
Fig. 14 - Typical Reverse Recovery vs. dif/dt
Fig. 15 - Typical Recovery Current vs. dif/dt
1000
10000
VR = 20 0V
T J = 1 2 5°C
T J = 2 5 °C
I F = 20A
800
V R = 20 0V
T J = 12 5 °C
T J = 25 °C
IF = 10A
di(rec)M/dt - ( A/µs)
I F = 20A
I F = 10A
I F = 5.0A
QIRR - ( nC )
1000
di f /dt - (A/µ s)
600
400
I F = 5.0A
1000
100
200
0
100
di f /dt - (A/µ s)
Fig. 16 - Typical Stored Charge vs. dif/dt
www.irf.com
1000
10
100
1000
di f /dt - (A/µ s )
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
7
IRG4PH30KD
90% Vge
+Vge
Same ty pe
device as
D .U.T.
V ce
Ic
9 0 % Ic
10% Vce
Ic
5 % Ic
430µF
80%
of Vce
D .U .T.
td (o ff)
tf
E o ff =
∫
t1 + 5 µ S
V c e ic d t
t1
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O L T A G E D .U .T .
1 0 % +V g
trr
Q rr =
Ic
trr
id d t
tx
∫ icdt
+Vg
tx
10% Vcc
1 0 % Irr
V cc
D UT VO LTAG E
AN D CU RRE NT
Vce
V pk
Irr
Vcc
1 0 % Ic
Ip k
9 0 % Ic
Ic
D IO D E R E C O V E R Y
W A V E FO R M S
tr
td (o n )
5% Vce
t1
∫
t2
E o n = V ce ie d t
t1
t2
E re c =
D IO D E R E V E R S E
REC OVERY ENER GY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
t4
V d id d t
t3
∫ Vcicdt
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4PH30KD
V g G A T E S IG N A L
D E V IC E U N D E R T E S T
C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
1000V
Vc*
RL=
960V
4 X I C @25°C
0 - 480V
50V
600 0µF
100V
Figure 19. Clamped Inductive Load Test Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
IRG4PH30KD
Notes:
Q Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature
(figure 20)
R VCC=80%(VCES), VGE=20V, L=10µH, RG= 23Ω (figure 19)
S Pulse width ≤ 80µs; duty factor ≤ 0.1%.
T Pulse width 5.0µs, single shot.
Case Outline — TO-247AC
3 .6 5 (.1 4 3 )
3 .5 5 (.1 4 0 )
0 .2 5 ( .0 1 0 )
1 5 .9 0 (.6 2 6 )
1 5 .3 0 (.6 0 2 )
-B-
-D-
M
D B M
-A5 .5 0 (.2 17 )
2 0 .3 0 (.8 0 0 )
1 9 .7 0 (.7 7 5 )
2X
1
2
5 .3 0 (.2 0 9 )
4 .7 0 (.1 8 5 )
2.5 0 ( .0 8 9)
1.5 0 ( .0 5 9)
4
5.5 0 (.2 1 7)
4.5 0 (.1 7 7)
LEAD
1234-
3
-C-
*
1 4 .8 0 (.5 8 3 )
1 4 .2 0 (.5 5 9 )
2 .4 0 (.0 9 4 )
2 .0 0 (.0 7 9 )
2X
5 .4 5 (.2 1 5 )
2X
4 .3 0 (.1 7 0 )
3 .7 0 (.1 4 5 )
3X
1 .4 0 ( .0 56 )
1 .0 0 ( .0 39 )
0.2 5 (.0 1 0 ) M
3 .4 0 (.1 3 3 )
3 .0 0 (.1 1 8 )
NOTE S:
1 D IM E N S IO N S & T O LE R A N C IN G
P E R A N S I Y 14 .5M , 1 98 2 .
2 C O N T R O L L IN G D IM E N S IO N : IN C H .
3 D IM E N S IO N S A R E S H O W N
M IL LIM E T E R S (IN C H E S ).
4 C O N F O R M S T O J E D E C O U T L IN E
T O -2 4 7A C .
*
A S S IG N M E N T S
GAT E
COLLECTO R
E M IT T E R
COLLECTO R
LO N G E R LE A D E D (2 0m m )
V E R S IO N A V A IL A B L E (T O -2 47 A D )
T O O R D E R A D D "-E " S U F F IX
TO PAR T NUM BER
0 .8 0 (.0 3 1 )
0 .4 0 (.0 1 6 )
2 .6 0 ( .1 0 2 )
2 .2 0 ( .0 8 7 )
3X
C A S
CO NF O RM S TO J EDEC O U TL IN E TO -2 47AC (T O -3P)
D im e n s io n s in M illim e te rs a n d (In c h e s )
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936
Data and specifications subject to change without notice. 6/00
10
www.irf.com