PD- 91579A IRG4PH30KD Short Circuit Rated UltraFast IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C Features • High short circuit rating optimized for motor control, tsc =10µs, VCC = 720V , TJ = 125°C, VGE = 15V • Combines low conduction losses with high switching speed • Tighter parameter distribution and higher efficiency than previous generations • IGBT co-packaged with HEXFREDTM ultrafast, ultrasoft recovery antiparallel diodes VCES = 1200V VCE(on) typ. = 3.10V G @VGE = 15V, IC = 10A E n-ch an nel Benefits • Latest generation 4 IGBT's offer highest power density motor controls possible • HEXFREDTM diodes optimized for performance with IGBTs. Minimized recovery characteristics reduce noise, EMI and switching losses • This part replaces IRGPH30MD2 products • For hints see design tip 97003 TO-247AC Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM tsc VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Q Clamped Inductive Load Current R Diode Continuous Forward Current Diode Maximum Forward Current Short Circuit Withstand Time Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw. Max. Units 1200 20 10 40 40 10 40 10 ± 20 100 42 -55 to +150 V A µs V W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m) Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Min. Typ. Max. ––– ––– ––– ––– ––– ––– ––– 0.24 ––– 6 (0.21) 1.2 2.5 ––– 40 ––– Units °C/W g (oz) 1 2/7/2000 IRG4PH30KD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Min. Typ. Collector-to-Emitter Breakdown VoltageS 1200 — Temperature Coeff. of Breakdown Voltage — 0.19 Collector-to-Emitter Saturation Voltage — 3.10 — 3.90 — 3.01 Gate Threshold Voltage 3.0 — Temperature Coeff. of Threshold Voltage — -12 Forward Transconductance T 4.3 6.5 Zero Gate Voltage Collector Current — — — — Diode Forward Voltage Drop — 3.4 — 3.3 Gate-to-Emitter Leakage Current — — Max. Units Conditions — V VGE = 0V, IC = 250µA — V/°C VGE = 0V, IC = 1.0mA 4.2 IC = 10A VGE = 15V — V IC = 20A See Fig. 2, 5 — IC = 10A, TJ = 150°C 6.0 VCE = VGE , IC = 250µA — mV/°C VCE = VGE , IC = 250µA — S VCE = 100V, IC = 10A 250 µA VGE = 0V, VCE = 1200V 3500 VGE = 0V, VCE = 1200V, TJ = 150°C 3.8 V IC = 10A See Fig. 13 3.7 IC = 10A, TJ = 150°C ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets tsc Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time td(on) tr td(off) tf Ets LE Cies Coes Cres trr Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Qrr Diode Reverse Recovery Charge di(rec)M/dt Diode Peak Rate of Fall of Recovery During tb 2 Min. — — — — — — — — — — 10 — — — — — — — — — — — — — — — — — Typ. Max. Units Conditions 53 80 IC = 10A 9.0 14 nC VCC = 400V See Fig.8 21 32 VGE = 15V 39 — 84 — TJ = 25°C ns 220 340 IC = 10A, VCC = 800V 90 140 VGE = 15V, R G = 23Ω 0.95 — Energy losses include "tail" 1.15 — mJ and diode reverse recovery 2.10 2.6 See Fig. 9,10,18 — — µs VCC = 720V, TJ = 125°C VGE = 15V, RG = 5.0Ω 42 — TJ = 150°C, See Fig. 10,11,18 79 — IC = 10A, VCC = 800V ns 540 — VGE = 15V, R G = 23Ω, 97 — Energy losses include "tail" 3.5 — mJ and diode reverse recovery 13 — nH Measured 5mm from package 800 — VGE = 0V 60 — pF VCC = 30V See Fig. 7 14 — ƒ = 1.0MHz 50 76 ns TJ = 25°C See Fig. 72 110 TJ = 125°C 14 I F = 10A 4.4 7.0 A TJ = 25°C See Fig. 5.9 8.8 TJ = 125°C 15 VR = 200V 130 200 nC TJ = 25°C See Fig. 250 380 TJ = 125°C 16 di/dt = 200A/µs 210 — A/µs TJ = 25°C See Fig. 180 — TJ = 125°C 17 www.irf.com IRG4PH30KD 15 LOAD CURRENT (A) F o r b o th : D u ty c y c le : 5 0 % TJ = 1 2 5 ° C T sink = 9 0 ° C G a te d riv e a s s p e c ifie d P o w e r D is s ip a tio n = 24 W 10 S q u a re w a v e : 6 0% of rate d volta ge I 5 Id e a l d io d e s 0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) I C , Collector-to-Emitter Current (A) 10 TJ = 150 °C TJ = 25 °C V = 15V 20µs PULSE WIDTH GE 1 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C , Collector-to-Emitter Current (A) 100 100 10 TJ = 150 ° C TJ = 25 °C V = 50V 5µs PULSE WIDTH CC 1 6 8 10 12 14 VGE, Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4PH30KD 5.0 20 V = 15V 80 us PULSE WIDTH VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) GE 15 10 5 0 25 50 75 100 125 150 4.5 IC = 20 A 4.0 3.5 IC = 10 A 3.0 IC = 5 A 2.5 2.0 -60 -40 -20 TC , Case Temperature ( °C) 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 10 1 D = 0.50 0.20 P DM 0.10 0.1 0.05 0.02 0.01 0.01 0.00001 t1 t2 SINGLE PULSE (THERMAL RESPONSE) 0.0001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4PH30KD 1000 C, Capacitance (pF) VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc Cies 800 600 400 Coes 200 20 VGE , Gate-to-Emitter Voltage (V) 1200 VCC = 400V I C = 10A 15 10 5 Cres 0 1 10 0 100 0 VCE , Collector-to-Emitter Voltage (V) 100 V CC = 800V V GE = 15V TJ = 25 ° C I C = 10A 2.2 2.1 2.0 0 10 20 30 40 , Gate Resistance RGRG , Gate Resistance ( Ω )(Ohm) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 30 40 50 60 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage Total Switching Losses (mJ) Total Switching Losses (mJ) 2.3 20 Q G , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 2.4 10 50 RG = Ohm 23Ω G = VGE = 15V VCC = 800V IC = 20 A 10 IC = 10 A IC = 5 A 1 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4PH30KD I C , Collector Current (A) 6.0 100 RG 23Ohm Ω G= = T J = 150 °C VCC = 800V VGE = 15V 4.0 2.0 VGE = 20V T J = 125 oC 10 SAFE OPERATING AREA 0.0 0 5 10 15 1 20 1 I C , Collector Current (A) 10 100 1000 10000 VCE , Collector-to-Emitter Voltage (V) Fig. 12 - Turn-Off SOA Fig. 11 - Typical Switching Losses vs. Collector Current 100 Instantaneous Forward Current ( A ) Total Switching Losses (mJ) 8.0 10 T J = 150°C T J = 125°C T = 25°C J 1 0.0 2.0 4.0 6.0 8.0 F orward V oltage D rop - V F M (V ) Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4PH30KD 100 100 V R = 20 0V T J = 1 2 5°C T J = 2 5 °C I F = 20A I F = 10A I F = 20A I F = 5.0A IF = 10A IF = 5.0A IIRRM - ( A ) trr- ( ns) 80 60 10 40 VR = 2 00 V T J = 1 2 5°C T J = 2 5 °C 20 100 di f /dt - (A/µ s) 1 100 1000 Fig. 14 - Typical Reverse Recovery vs. dif/dt Fig. 15 - Typical Recovery Current vs. dif/dt 1000 10000 VR = 20 0V T J = 1 2 5°C T J = 2 5 °C I F = 20A 800 V R = 20 0V T J = 12 5 °C T J = 25 °C IF = 10A di(rec)M/dt - ( A/µs) I F = 20A I F = 10A I F = 5.0A QIRR - ( nC ) 1000 di f /dt - (A/µ s) 600 400 I F = 5.0A 1000 100 200 0 100 di f /dt - (A/µ s) Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com 1000 10 100 1000 di f /dt - (A/µ s ) Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7 IRG4PH30KD 90% Vge +Vge Same ty pe device as D .U.T. V ce Ic 9 0 % Ic 10% Vce Ic 5 % Ic 430µF 80% of Vce D .U .T. td (o ff) tf E o ff = ∫ t1 + 5 µ S V c e ic d t t1 Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf G A T E V O L T A G E D .U .T . 1 0 % +V g trr Q rr = Ic trr id d t tx ∫ icdt +Vg tx 10% Vcc 1 0 % Irr V cc D UT VO LTAG E AN D CU RRE NT Vce V pk Irr Vcc 1 0 % Ic Ip k 9 0 % Ic Ic D IO D E R E C O V E R Y W A V E FO R M S tr td (o n ) 5% Vce t1 ∫ t2 E o n = V ce ie d t t1 t2 E re c = D IO D E R E V E R S E REC OVERY ENER GY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 t4 V d id d t t3 ∫ Vcicdt t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4PH30KD V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T . V O L T A G E IN D .U .T . C U R R E N T IN D 1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit D.U.T. L 1000V Vc* RL= 960V 4 X I C @25°C 0 - 480V 50V 600 0µF 100V Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4PH30KD Notes: Q Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) R VCC=80%(VCES), VGE=20V, L=10µH, RG= 23Ω (figure 19) S Pulse width ≤ 80µs; duty factor ≤ 0.1%. T Pulse width 5.0µs, single shot. Case Outline — TO-247AC 3 .6 5 (.1 4 3 ) 3 .5 5 (.1 4 0 ) 0 .2 5 ( .0 1 0 ) 1 5 .9 0 (.6 2 6 ) 1 5 .3 0 (.6 0 2 ) -B- -D- M D B M -A5 .5 0 (.2 17 ) 2 0 .3 0 (.8 0 0 ) 1 9 .7 0 (.7 7 5 ) 2X 1 2 5 .3 0 (.2 0 9 ) 4 .7 0 (.1 8 5 ) 2.5 0 ( .0 8 9) 1.5 0 ( .0 5 9) 4 5.5 0 (.2 1 7) 4.5 0 (.1 7 7) LEAD 1234- 3 -C- * 1 4 .8 0 (.5 8 3 ) 1 4 .2 0 (.5 5 9 ) 2 .4 0 (.0 9 4 ) 2 .0 0 (.0 7 9 ) 2X 5 .4 5 (.2 1 5 ) 2X 4 .3 0 (.1 7 0 ) 3 .7 0 (.1 4 5 ) 3X 1 .4 0 ( .0 56 ) 1 .0 0 ( .0 39 ) 0.2 5 (.0 1 0 ) M 3 .4 0 (.1 3 3 ) 3 .0 0 (.1 1 8 ) NOTE S: 1 D IM E N S IO N S & T O LE R A N C IN G P E R A N S I Y 14 .5M , 1 98 2 . 2 C O N T R O L L IN G D IM E N S IO N : IN C H . 3 D IM E N S IO N S A R E S H O W N M IL LIM E T E R S (IN C H E S ). 4 C O N F O R M S T O J E D E C O U T L IN E T O -2 4 7A C . * A S S IG N M E N T S GAT E COLLECTO R E M IT T E R COLLECTO R LO N G E R LE A D E D (2 0m m ) V E R S IO N A V A IL A B L E (T O -2 47 A D ) T O O R D E R A D D "-E " S U F F IX TO PAR T NUM BER 0 .8 0 (.0 3 1 ) 0 .4 0 (.0 1 6 ) 2 .6 0 ( .1 0 2 ) 2 .2 0 ( .0 8 7 ) 3X C A S CO NF O RM S TO J EDEC O U TL IN E TO -2 47AC (T O -3P) D im e n s io n s in M illim e te rs a n d (In c h e s ) IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice. 6/00 10 www.irf.com