PD -91734B IRG4BC10KD INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Short Circuit Rated UltraFast IGBT C Features • High short circuit rating optimized for motor control, tsc =10µs, @360V VCE (start), TJ = 125°C, VGE = 15V • Combines low conduction losses with high switching speed • Tighter parameter distribution and higher efficiency than previous generations • IGBT co-packaged with HEXFREDTM ultrafast, ultrasoft recovery antiparallel diodes VCES = 600V VCE(on) typ. = 2.39V G @VGE = 15V, IC = 5.0A E n-ch an nel Benefits • Latest generation 4 IGBTs offer highest power density motor controls possible • HEXFREDTM diodes optimized for performance with IGBTs. Minimized recovery characteristics reduce noise, EMI and switching losses TO-220AB Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM tsc VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector CurrentQ Clamped Inductive Load Current R Diode Continuous Forward Current Diode Maximum Forward Current Short Circuit Withstand Time Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw. Max. Units 600 9.0 5.0 18 18 4.0 16 10 ± 20 38 15 -55 to +150 V A µs V W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m) Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Min. Typ. Max. ––– ––– ––– ––– ––– ––– ––– 0.50 ––– 2 (0.07) 3.3 7.0 ––– 80 ––– Units °C/W g (oz) 1 4/24/2000 IRG4BC10KD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Min. Typ. Max. Units Conditions Collector-to-Emitter Breakdown Voltageƒ 600 — — V VGE = 0V, IC = 250µA Temperature Coeff. of Breakdown Voltage — 0.58 — V/°C VGE = 0V, IC = 1.0mA Collector-to-Emitter Saturation Voltage — 2.39 2.62 IC = 5.0A VGE = 15V See Fig. 2, 5 — 3.25 — V IC = 9.0A — 2.63 — IC = 5.0A, TJ = 150°C Gate Threshold Voltage 3.0 — 6.5 VCE = VGE, IC = 250µA Temperature Coeff. of Threshold Voltage — -11 — mV/°C VCE = VGE, IC = 250µA Forward Transconductance „ 1.2 1.8 — S VCE = 50V, IC = 5.0A Zero Gate Voltage Collector Current — — 250 µA VGE = 0V, VCE = 600V — — 1000 VGE = 0V, VCE = 600V, TJ = 150°C Diode Forward Voltage Drop — 1.5 1.8 V IC = 4.0A See Fig. 13 — 1.4 1.7 IC = 4.0A, TJ = 150°C Gate-to-Emitter Leakage Current — — ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets tsc Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time td(on) tr td(off) tf Ets LE Cies Coes Cres trr Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Qrr Diode Reverse Recovery Charge di(rec)M /dt Diode Peak Rate of Fall of Recovery During tb 2 Min. — — — — — — — — — — 10 Typ. 19 2.9 9.8 49 28 97 140 0.25 0.14 0.39 — — — — — — — — — — — — — — — — — — 46 32 100 310 0.56 7.5 220 29 7.5 28 38 2.9 3.7 40 70 280 235 Max. Units Conditions 29 IC = 5.0A 4.3 nC VCC = 400V See Fig.8 15 VGE = 15V — — TJ = 25°C ns 150 IC = 5.0A, VCC = 480V 210 VGE = 15V, RG = 100Ω — Energy losses include "tail" — mJ and diode reverse recovery 0.48 See Fig. 9,10,14 — µs VCC = 360V, TJ = 125°C VGE = 15V, RG = 100Ω , VCPK < 500V — TJ = 150°C, See Fig. 10,11,14 — IC = 5.0A, VCC = 480V ns — VGE = 15V, RG = 100Ω — Energy losses include "tail" — mJ and diode reverse recovery — nH Measured 5mm from package — VGE = 0V — pF VCC = 30V See Fig. 7 — ƒ = 1.0MHz 42 ns TJ = 25°C See Fig. 57 TJ = 125°C 14 IF = 4.0A 5.2 A TJ = 25°C See Fig. 6.7 TJ = 125°C 15 VR = 200V 60 nC TJ = 25°C See Fig. 105 TJ = 125°C 16 di/dt = 200A/µs — A/µs TJ = 25°C See Fig. — TJ = 125°C 17 www.irf.com IRG4BC10KD 6.0 For both: D uty cy cle: 50% TJ = 125°C T s ink = 90°C G ate drive as specified LOAD CURRENT (A) 5.0 4.0 P ow e r Dis sip ation = 9.2 W S q u a re w a v e : 6 0% of rate d volta ge 3.0 I 2.0 Id e a l d io d e s 1.0 0.0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 TJ = 25 °C 10 1 1.0 TJ = 150 °C V GE = 15V 20µs PULSE WIDTH 2.0 3.0 4.0 5.0 6.0 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com 7.0 I C , Collector-to-Emitter Current (A) I C , Collector Current (A) 100 10 TJ = 150 °C TJ = 25 °C 1 5 10 V = 50V 5µs PULSE WIDTH CC 15 20 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4BC10KD 5.0 V = 15V 80 us PULSE WIDTH GE VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 10 8 6 4 2 0 25 50 75 100 125 150 I C = 10 A 4.0 3.0 IC = 5 A I C = 2.5 A 2.0 1.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C) TC , Case Temperature ( °C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 0.01 0.00001 0.02 0.01 P DM SINGLE PULSE (THERMAL RESPONSE) t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4BC10KD VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc C, Capacitance (pF) 300 Cies 200 100 Coes 20 VGE , Gate-to-Emitter Voltage (V) 400 VCC = 400V I C = 5.0A 16 12 8 4 C res 0 1 10 0 100 0 VCE , Collector-to-Emitter Voltage (V) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 10 V CC = 480V V GE = 15V TJ = 25 ° C 0.38 I C = 5.0A 0.36 0.34 0.32 0.30 0 20 40 60 RG , Gate Resistance 80 (Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 8 12 16 20 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage Total Switching Losses (mJ) Total Switching Losses (mJ) 0.40 4 QG , Total Gate Charge (nC) 100 50 Ω RG = Ohm VGE = 15V VCC = 480V IC = 10 A 1 IC = 5 A IC = 2.5 A 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4BC10KD 1.5 RG TJ VCC VGE = 50 Ohm Ω = 150° C = 480V = 15V 100 I C, Collector-to-Emitter Current (A) Total Switching Losses (mJ) 2.0 1.0 0.5 VGE = 20V T J = 125 o C 10 SAFE OPERATING AREA 0.0 1 0 2 4 6 8 10 1 10 100 1000 VCE, Collector-to-Emitter Voltage (V) I C , Collector Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA 100 TJ = 150°C 10 TJ = 125°C T = 25°C J 1 0.1 0.0 1.0 2.0 3.0 4.0 5.0 6.0 F orward V oltage D rop - V F M(V ) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4BC10KD 50 14 I F = 8.0A 45 12 I F = 4.0A VR = 20 0V T J = 1 25 °C T J = 2 5°C I F = 8.0A 10 I F = 4.0A Irr- ( A) trr- (ns) 40 35 8 6 30 4 25 2 VR = 2 00 V T J = 1 2 5°C T J = 2 5 °C 20 100 di f /dt - (A/µ s) 0 100 1000 1000 di f /dt - (A/µ s) Fig. 15 - Typical Recovery Current vs. dif/dt Fig. 14 - Typical Reverse Recovery vs. dif/dt 200 1000 VR = 2 00 V T J = 1 25°C T J = 2 5°C VR = 20 0V T J = 1 25 °C T J = 2 5°C 160 I F = 8.0A di (rec) M/dt- (A /µs) I F = 4.0A Qrr- (nC) 120 I F = 8.0A 80 I F = 4.0A 40 0 100 di f /dt - (A/µ s) 1000 Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com A 100 100 1000 di f /dt - (A/µ s ) Fig. 17 - Typical di(rec)M/dt vs. dif/dt, 7 IRG4BC10KD Same ty pe device as D .U.T. 430µF 80% of Vce 90% D .U .T. 10% Vge VC 90% td(off) 10% IC 5% Fig. 18a - Test Circuit for Measurement of tf tr ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t d(on) t=5µs E on E off E ts = (Eon +Eoff ) Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf G A T E V O L T A G E D .U .T . 1 0 % +V g trr Q rr = Ic trr id t Ic ddt tx ∫ +Vg tx 10% Vcc 1 0 % Irr V cc D UT VO LTAG E AN D CU RRE NT Vce V pk Irr Vcc 1 0 % Ic Ip k 9 0 % Ic Ic D IO D E R E C O V E R Y W A V E FO R M S tr td (o n ) 5% Vce t1 ∫ t2 ce ieIcd t dt Vce E on = V t1 t2 E re c = D IO D E R E V E R S E REC OVERY ENER GY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 ∫ t4 VVd d idIc d t dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4BC10KD V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T . V O L T A G E IN D .U .T . C U R R E N T IN D 1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit L 1000V D.U.T. Vc* RL= 480V 4 X IC @25°C 0 - 480V 50V 6000µ F 100 V Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4BC10KD Notes: Q Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) R VCC=80%(VCES), VGE=20V, L=10µH, RG= 100Ω (figure 19) SPulse width ≤ 80µs; duty factor ≤ 0.1%. TPulse width 5.0µs, single shot. Case Outline TO-220AB 2 .8 7 (.1 1 3 ) 2 .6 2 (.1 0 3 ) 1 0 .5 4 (.41 5 ) 1 0 .2 9 (.40 5 ) 4 3.78 (.149) 3.54 (.139) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255 ) 6.10 (.240 ) 1 5 .2 4 (.6 0 0 ) 1 4 .8 4 (.5 8 4 ) 1.15 (.045) M IN 1 2 1 4 .0 9 (.5 5 5 ) 1 3 .4 7 (.5 3 0 ) N O TE S : 1 D IM E N S IO N S & T O L E R A N C IN G P E R A N S I Y 14 .5 M , 1 9 8 2 . 2 C O N T R O L L IN G D IM E N S IO N : IN C H . 3 D IM E N S IO N S A R E S H O W N M ILL IM E T E R S (IN C H E S ). 4 C O N F O R M S T O JE D E C O U T L IN E T O -2 2 0 A B . LEAD 1234- 3 3X 1 .4 0 (.0 5 5 ) 3 X 1 .1 5 (.0 4 5 ) -B - 4.69 (.185) 4.20 (.165) 3.96 (.160) 3.55 (.140) A S S IG N M E N T S GA TE C O L LE C T O R E M IT T E R C O L LE C T O R 4.06 (.160 ) 3.55 (.140 ) 3X 0.93 (.037) 0.69 (.027) 0 .3 6 (.01 4 ) M B A M 2 .5 4 (.1 0 0) 3X 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2X CONFORMS TO JEDEC OUTLINE TO-220AB D im e ns io ns in M illim e ters a nd (In c he s ) IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice. 4/00 10 www.irf.com