IRF IRG4PH40KD

PD- 91577B
IRG4PH40KD
Short Circuit Rated
UltraFast IGBT
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
C
Features
• High short circuit rating optimized for motor control,
tsc =10µs, VCC = 720V , TJ = 125°C,
VGE = 15V
• Combines low conduction losses with high
switching speed
• Tighter parameter distribution and higher efficiency
than previous generations
• IGBT co-packaged with HEXFREDTM ultrafast,
ultrasoft recovery antiparallel diodes
VCES = 1200V
VCE(on) typ. = 2.74V
G
@VGE = 15V, IC = 15A
E
n-ch an nel
Benefits
• Latest generation 4 IGBT's offer highest power density
motor controls possible
• HEXFREDTM diodes optimized for performance with IGBTs.
Minimized recovery characteristics reduce noise, EMI and
switching losses
• This part replaces the IRGPH40KD2 and IRGPH40MD2
products
• For hints see design tip 97003
TO-247AC
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
tsc
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current Q
Clamped Inductive Load Current R
Diode Continuous Forward Current
Diode Maximum Forward Current
Short Circuit Withstand Time
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw.
Max.
Units
1200
30
15
60
60
8.0
130
10
± 20
160
65
-55 to +150
V
A
µs
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1 N•m)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
Min.
Typ.
Max.
–––
–––
–––
–––
–––
–––
–––
0.24
–––
6 (0.21)
0.77
1.7
–––
40
–––
Units
°C/W
g (oz)
1
2/7/2000
IRG4PH40KD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
VFM
IGES
Parameter
Min. Typ. Max. Units
Collector-to-Emitter Breakdown VoltageS 1200 —
—
V
Temperature Coeff. of Breakdown Voltage — 0.37 — V/°C
Collector-to-Emitter Saturation Voltage
— 2.74 3.4
— 3.29 —
V
— 2.53 —
Gate Threshold Voltage
3.0
—
6.0
Temperature Coeff. of Threshold Voltage
— -3.3 — mV/°C
Forward Transconductance T
8.0
12
—
S
Zero Gate Voltage Collector Current
—
—
250
µA
—
— 3000
Diode Forward Voltage Drop
—
2.6 3.3
V
—
2.4 3.1
Gate-to-Emitter Leakage Current
—
— ±100 nA
Conditions
VGE = 0V, IC = 250µA
VGE = 0V, IC = 1.0mA
IC = 15A
VGE = 15V
IC = 30A
See Fig. 2, 5
IC = 15A, TJ = 150°C
VCE = VGE, IC = 250µA
VCE = VGE, IC = 250µA
VCE = 100V, IC = 15A
VGE = 0V, VCE = 1200V
VGE = 0V, VCE = 1200V, TJ = 150°C
IC = 8.0A
See Fig. 13
IC = 8.0A, TJ = 125°C
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
tsc
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Short Circuit Withstand Time
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
trr
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Current
Qrr
Diode Reverse Recovery Charge
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
2
Min.
—
—
—
—
—
—
—
—
—
—
10
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ. Max. Units
Conditions
94 140
IC = 15A
14
22
nC
VCC = 400V
See Fig.8
37
55
VGE = 15V
50
—
31
—
TJ = 25°C
ns
96 140
IC = 15A, VCC = 800V
220 330
VGE = 15V, RG = 10Ω
1.31 —
Energy losses include "tail"
1.12 —
mJ and diode reverse recovery
2.43 2.8
See Fig. 9,10,18
—
—
µs
VCC = 720V, TJ = 125°C
VGE = 15V, RG = 10Ω , VCPK < 500V
49
—
TJ = 150°C,
See Fig. 10,11,18
33
—
IC = 15A, VCC = 800V
ns
290
—
VGE = 15V, RG = 10Ω,
440
—
Energy losses include "tail"
5.1
—
mJ and diode reverse recovery
13
—
nH
Measured 5mm from package
1600 —
VGE = 0V
77
—
pF
VCC = 30V
See Fig. 7
26
—
ƒ = 1.0MHz
63
95
ns
TJ = 25°C See Fig.
106 160
TJ = 125°C
14
IF = 8.0A
4.5 8.0
A
TJ = 25°C See Fig.
6.2
11
TJ = 125°C
15
VR = 200V
140 380
nC
TJ = 25°C See Fig.
335 880
TJ = 125°C
16
di/dt = 200Aµs
133
—
A/µs TJ = 25°C See Fig.
85
—
TJ = 125°C
17
www.irf.com
IRG4PH40KD
25
For both:
D uty cy cle: 50%
TJ = 125°C
T s ink = 90°C
G ate drive as specified
P ow e r Dis sip ation = 35 W
LOAD CURRENT (A)
20
15
S q u a re w a v e :
6 0% of rate d
volta ge
10
I
5
Id e a l d io d e s
0
0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
I C , Collector-to-Emitter Current (A)
TJ = 150 °C
10
TJ = 25 °C
V
= 15V
20µs PULSE WIDTH
GE
1
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
I C , Collector-to-Emitter Current (A)
100
100
TJ = 150 °C
10
TJ = 25 ° C
V
= 50V
5µs PULSE WIDTH
CC
1
4
6
8
10
12
14
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4PH40KD
4.0
V
= 15V
80 us PULSE WIDTH
GE
VCE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current(A)
30
25
20
15
10
5
0
25
50
75
100
125
150
I C = 30 A
3.5
3.0
I C = 15 A
2.5
I C = 7.5 A
2.0
-60 -40 -20
TC , Case Temperature ( °C)
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( ° C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
1
D = 0.50
0.20
0.1
0.10
P DM
0.05
t1
0.02
0.01
0.01
0.00001
SINGLE PULSE
(THERMAL RESPONSE)
0.0001
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4PH40KD
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
C, Capacitance (pF)
2000
Cies
1500
1000
500
Coes
Cres
20
VGE , Gate-to-Emitter Voltage (V)
2500
0
1
10
12
8
4
0
100
0
Total Switching Losses (mJ)
Total Switching Losses (mJ)
100
2.6
2.4
2.2
2.0
20
30
40
, GateResistance
Resistance(Ohm)
(Ω)
RGRG
, Gate
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
40
60
80
100
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
800V
V CC = 480V
V GE = 15V
TJ = 25 °C
2.8 I C = 15A
10
20
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
0
VCC = 400V
I C = 15A
16
VCE , Collector-to-Emitter Voltage (V)
3.0
50
RG = 10
Ohm
Ω
VGE = 15V
800V
VCC = 480V
IC = 30 A
10
IC = 15 A
IC = 7.5 A
1
0.1
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( ° C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4PH40KD
100
= 10
Ohm
Ω
= 150 ° C
800V
= 480V
= 15V
I C , Collector-to-Emitter Current (A)
RG
TJ
12 VCC
VGE
10
8
6
4
2
VGE = 20V
T J = 125 oC
10
SAFE OPERATING AREA
1
0
0
5
10
15
20
25
1
30
10
100
1000
10000
VCE , Collector-to-Emitter Voltage (V)
I C , Collector-to-emitter Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
100
Insta ntaneo us F orw ard Cu rrent - I F (A )
Total Switching Losses (mJ)
14
10
TJ = 15 0°C
TJ = 12 5°C
TJ = 2 5°C
1
0
2
4
6
8
10
Fo rwa rd V oltage D rop - V F M (V )
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4PH40KD
100
200
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
160
I F = 8 .0 A
I F = 4 .0A
I IR R M - (A )
t rr - (ns)
I F = 16A
120
I F = 1 6A
I F = 8.0A
10
I F = 4 .0 A
80
40
0
100
d i f /d t - (A /µ s)
1
100
1000
1000
di f /dt - (A /µs)
Fig. 14 - Typical Reverse Recovery vs. dif/dt
Fig. 15 - Typical Recovery Current vs. dif/dt
1000
600
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
500
d i(re c)M /d t - (A /µs)
I F = 4 .0A
Q R R - (nC )
400
I F = 16 A
300
200
I F = 8 .0A
I F = 4 .0A
I F = 8.0 A
100
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
100
0
100
d i f /d t - (A /µ s)
Fig. 16 - Typical Stored Charge vs. dif/dt
www.irf.com
I F = 1 6A
1000
10
100
1000
di f /dt - (A /µs)
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
7
IRG4PH40KD
90% Vge
+Vge
Same ty pe
device as
D .U.T.
Vce
430µF
80%
of Vce
Ic
D .U .T.
9 0 % Ic
10% Vce
Ic
5 % Ic
td (o ff)
tf
Eoff =
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
t1 + 5 µ S
V c e ic d t
t1
∫ Vce Ic dt
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O L T A G E D .U .T .
1 0 % +V g
trr
Q rr =
Ic
trr
id d t
tx
∫ Ic dt
+Vg
tx
10% Vcc
1 0 % Irr
V cc
D UT VO LTAG E
AN D CU RRE NT
Vce
V pk
Irr
Vcc
1 0 % Ic
Ip k
9 0 % Ic
Ic
D IO D E R E C O V E R Y
W A V E FO R M S
tr
td (o n )
5% Vce
t1
∫
t2
ce ieIcd t dt
E o n = VVce
t1
t2
E re c =
D IO D E R E V E R S E
REC OVERY ENER GY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
t4
V d id d t
t3
∫ Vd Ic dt
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4PH40KD
V g G A T E S IG N A L
D E V IC E U N D E R T E S T
C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L
1000V
D.U.T.
Vc*
RL=
800V
4 X IC @25°C
0 - 800V
50V
6000µ F
100 V
Figure 19. Clamped Inductive Load Test Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
IRG4PH40KD
Notes:
Q Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature
(figure 20)
R VCC=80%(VCES), VGE=20V, L=10µH, RG= 10Ω (figure 19)
S Pulse width ≤ 80µs; duty factor ≤ 0.1%.
T Pulse width 5.0µs, single shot.
Case Outline — TO-247AC
3 .6 5 (.1 4 3 )
3 .5 5 (.1 4 0 )
0 .2 5 ( .0 1 0 )
1 5 .9 0 (.6 2 6 )
1 5 .3 0 (.6 0 2 )
-B-
-D-
M
D B M
-A5 .5 0 (.2 17 )
2 0 .3 0 (.8 0 0 )
1 9 .7 0 (.7 7 5 )
2X
1
2
5 .3 0 (.2 0 9 )
4 .7 0 (.1 8 5 )
2.5 0 ( .0 8 9)
1.5 0 ( .0 5 9)
4
5.5 0 (.2 1 7)
4.5 0 (.1 7 7)
LEAD
1234-
3
-C-
*
1 4 .8 0 (.5 8 3 )
1 4 .2 0 (.5 5 9 )
2 .4 0 (.0 9 4 )
2 .0 0 (.0 7 9 )
2X
5 .4 5 (.2 1 5 )
2X
4 .3 0 (.1 7 0 )
3 .7 0 (.1 4 5 )
3X
1 .4 0 ( .0 56 )
1 .0 0 ( .0 39 )
0.2 5 (.0 1 0 ) M
3 .4 0 (.1 3 3 )
3 .0 0 (.1 1 8 )
NOTE S:
1 D IM E N S IO N S & T O LE R A N C IN G
P E R A N S I Y 14 .5M , 1 98 2 .
2 C O N T R O L L IN G D IM E N S IO N : IN C H .
3 D IM E N S IO N S A R E S H O W N
M IL LIM E T E R S (IN C H E S ).
4 C O N F O R M S T O J E D E C O U T L IN E
T O -2 4 7A C .
*
A S S IG N M E N T S
GAT E
COLLECTO R
E M IT T E R
COLLECTO R
LO N G E R LE A D E D (2 0m m )
V E R S IO N A V A IL A B L E (T O -2 47 A D )
T O O R D E R A D D "-E " S U F F IX
TO PAR T NUM BER
0 .8 0 (.0 3 1 )
0 .4 0 (.0 1 6 )
2 .6 0 ( .1 0 2 )
2 .2 0 ( .0 8 7 )
3X
C A S
CO NF O RM S TO J EDEC O U TL IN E TO -2 47AC (T O -3P)
D im e n s io n s in M illim e te rs a n d (In c h e s )
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936
Data and specifications subject to change without notice. 6/00
10
www.irf.com