IRF IRG4IBC20KD

PD -91689A
IRG4IBC20KD
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
Short Circuit Rated
UltraFast IGBT
C
• High switching speed optimized for up to 25kHz
with low VCE(on)
• Short Circuit Rating 10µs @ 125°C, VGE = 15V
• Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency than
previous generation
• IGBT co-packaged with HEXFREDTM ultrafast,
ultra-soft-recovery anti-parallel diodes for use in
bridge configurations
• Industry standard TO-220 FULLPAK
VCES = 600V
VCE(on) typ. = 2.27V
G
@VGE = 15V, IC = 6.3A
E
n-ch an nel
Benefits
• Generation 4 IGBTs offer highest efficiencies available
maximizing the power density of the system
• IGBTs optimized for specific application conditions
• HEXFREDTM diodes optimized for performance with IGBTs.
Minimized recovery characteristics reduce noise EMI
• Designed to exceed the power handling capability of
equivalent industry-standard IGBTs
TO-220 FULLPAK
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
tsc
VISOL
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current Q
Clamped Inductive Load Current R
Diode Continuous Forward Current
Diode Maximum Forward Current
Short Circuit Withstand Time
RMS Isolation Voltage, Terminal to Case, t = 1 min
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw.
Max.
Units
600
11.5
6.3
23
24
6.3
24
10
2500
± 20
34
14
-55 to +150
V
A
µs
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1 N•m)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Junction-to-Ambient, typical socket mount
Weight
Typ.
Max.
–––
–––
–––
2.0 (0.07)
3.7
5.5
65
–––
Units
°C/W
g (oz)
1
4/24/2000
IRG4IBC20KD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
VFM
IGES
Parameter
Min. Typ. Max. Units
Collector-to-Emitter Breakdown VoltageS 600 —
—
V
Temperature Coeff. of Breakdown Voltage — 0.49 — V/°C
Collector-to-Emitter Saturation Voltage
— 2.27 2.8
— 3.01 —
V
— 2.43 —
Gate Threshold Voltage
3.0
—
6.0
Temperature Coeff. of Threshold Voltage
—
-10
— mV/°C
Forward Transconductance T
2.9 4.3
—
S
Zero Gate Voltage Collector Current
—
—
250
µA
—
— 1000
Diode Forward Voltage Drop
—
1.4 1.7
V
—
1.3 1.6
Gate-to-Emitter Leakage Current
—
— ±100 nA
Conditions
VGE = 0V, IC = 250µA
VGE = 0V, IC = 1.0mA
IC = 9.0A
VGE = 15V
See Fig. 2, 5
IC = 16A
IC = 9.0A, TJ = 150°C
VCE = VGE, IC = 250µA
VCE = VGE, IC = 250µA
VCE = 100V, IC = 9.0A
VGE = 0V, VCE = 600V
VGE = 0V, VCE = 600V, TJ = 150°C
IC = 8.0A
See Fig. 13
IC = 8.0A, TJ = 150°C
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
tsc
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Short Circuit Withstand Time
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
trr
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Current
Qrr
Diode Reverse Recovery Charge
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
2
Min.
—
—
—
—
—
—
—
—
—
—
10
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ. Max. Units
Conditions
34
51
IC = 9.0A
4.9 7.4
nC
VCC = 400V
See Fig.8
14
21
VGE = 15V
54
—
34
—
TJ = 25°C
ns
180 270
IC = 9.0A, VCC = 480V
72 110
VGE = 15V, RG = 50Ω
0.34 —
Energy losses include "tail"
0.30 —
mJ and diode reverse recovery
0.64 0.96
See Fig. 9,10,14
—
—
µs
VCC = 360V, TJ = 125°C
VGE = 15V, RG = 50Ω , VCPK < 500V
51
—
TJ = 150°C,
See Fig. 10,11,14
37
—
IC = 9.0A, VCC = 480V
ns
220
—
VGE = 15V, RG = 50Ω
160
—
Energy losses include "tail"
0.85 —
mJ and diode reverse recovery
7.5
—
nH
Measured 5mm from package
450
—
VGE = 0V
61
—
pF
VCC = 30V
See Fig. 7
14
—
ƒ = 1.0MHz
37
55
ns
TJ = 25°C See Fig.
55
90
TJ = 125°C
14
IF = 8.0A
3.5 5.0
A
TJ = 25°C See Fig.
4.5 8.0
TJ = 125°C
15
VR = 200V
65 138
nC
TJ = 25°C See Fig.
124 360
TJ = 125°C
16
di/dt = 200Aµs
240
—
A/µs TJ = 25°C See Fig.
210
—
TJ = 125°C
17
www.irf.com
IRG4IBC20KD
8
For both:
LOAD CURRENT (A)
7
D uty cy cle: 50%
TJ = 125°C
T s ink = 90°C
G ate drive as specified
6
P ow e r Dis sip ation = 9.5 W
5
S q u a re w a v e :
6 0% of rate d
volta ge
4
3
I
2
Id e a l d io d e s
1
0
0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
I C, Collector-to-Emitter Current (A)
TJ = 25 o C
TJ = 150 o C
10
V
= 15V
20µs PULSE WIDTH
GE
1
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
I C , Collector-to-Emitter Current (A)
100
100
10
TJ = 150 o C
TJ = 25 oC
V
= 50V
5µs PULSE WIDTH
CC
1
5
10
15
20
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4IBC20KD
5.0
V
= 15V
80 us PULSE WIDTH
GE
VCE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current(A)
12
10
8
6
4
2
0
25
50
75
100
125
3.0
IC = 9.0A
9A
IC = 4.5 A
2.0
1.0
-60 -40 -20
150
TC , Case Temperature ( °C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
IC = 18 A
4.0
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( ° C)
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC)
10
D = 0.50
1
0.20
0.10
0.05
0.1
0.01
0.00001
P DM
0.02
0.01
t1
SINGLE PULSE
(THERMAL RESPONSE)
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4IBC20KD
C, Capacitance (pF)
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
600
Cies
400
200
C
oes
20
VGE , Gate-to-Emitter Voltage (V)
800
VCC = 400V
I C = 9.0A
16
12
8
4
C
res
0
1
10
0
100
0
VCE , Collector-to-Emitter Voltage (V)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
10
V CC = 480V
V GE = 15V
TJ = 25 ° C
I C = 9.0A
0.7
0.6
0.5
0
10
20
30
40
RRGG ,, Gate
Resistance( Ω
(Ohm)
Gate Resistance
)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
20
30
40
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Total Switching Losses (mJ)
Total Switching Losses (mJ)
0.8
10
QG , Total Gate Charge (nC)
50
RG 50
= Ohm
Ω
VGE = 15V
VCC = 480V
IC = 18 A
IC = 9.0A
9A
1
IC = 4.5 A
0.1
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature (° C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4IBC20KD
100
Ω
= 50
Ohm
= 150° C
= 480V
= 15V
I C, Collector Current (A)
RG
TJ
VCC
VGE
2.0
1.0
VGE = 20V
T J = 125 o C
10
SAFE OPERATING AREA
0.0
0
4
8
12
16
1
20
1
I C , Collector-to-emitter Current (A)
10
100
1000
VCE, Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
100
Instantan eou s Forwa rd C urre nt - I F (A )
Total Switching Losses (mJ)
3.0
10
TJ = 15 0°C
TJ = 12 5°C
TJ = 2 5°C
1
0.1
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
Fo rwa rd V oltage D rop - V FM (V )
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4IBC20KD
100
100
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
80
I F = 8 .0A
I IR R M - (A )
t rr - (ns)
IF = 16 A
60
I F = 1 6A
10
IF = 8 .0 A
40
I F = 4.0 A
I F = 4 .0 A
20
0
100
1
100
1000
d i f /d t - (A /µ s)
1000
di f /dt - (A /µs)
Fig. 14 - Typical Reverse Recovery vs. dif/dt
Fig. 15 - Typical Recovery Current vs. dif/dt
10000
500
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
VR = 2 0 0 V
T J = 1 2 5 °C
T J = 2 5 °C
d i(re c)M /d t - (A /µs)
Q R R - (n C )
400
300
I F = 16 A
200
I F = 8 .0A
I F = 4 .0A
1000
I F = 8.0 A
I F = 16 A
100
IF = 4.0 A
0
100
di f /dt - (A /µs)
Fig. 16 - Typical Stored Charge vs. dif/dt
www.irf.com
1000
100
100
1000
di f /dt - (A /µs)
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
7
IRG4IBC20KD
90% Vge
Same ty pe
device as
D .U.T.
+Vge
V ce
430µF
80%
of Vce
D .U .T.
Ic
9 0 % Ic
10% Vce
Ic
5 % Ic
td (o ff)
tf
E o ff =
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
∫
t1 + 5 µ S
V c e icIcd tdt
Vce
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O L T A G E D .U .T .
1 0 % +V g
trr
Q rr =
Ic
∫
trr
id
t
Ic ddt
tx
+Vg
tx
10% Vcc
1 0 % Irr
V cc
D UT VO LTAG E
AN D CU RRE NT
Vce
V pk
Irr
Vcc
1 0 % Ic
Ip k
9 0 % Ic
Ic
D IO D E R E C O V E R Y
W A V E FO R M S
tr
td (o n )
5% Vce
t1
∫
t2
ce ieIcd t dt
Vce
E on = V
t1
t2
E re c =
D IO D E R E V E R S E
REC OVERY ENER GY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
∫
t4
VVc
d idIcd t dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4IBC20KD
V g G A T E S IG N A L
D E V IC E U N D E R T E S T
C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L
1000V
D.U.T.
Vc*
RL=
480V
4 X IC @25°C
0 - 480V
50V
6000µ F
100 V
Figure 19. Clamped Inductive Load Test
Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
IRG4IBC20KD
Notes:
Q Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature
(figure 20)
R VCC=80%(VCES), VGE=20V, L=10µH, RG= 50Ω (figure 19)
S Pulse width ≤ 80µs; duty factor ≤ 0.1%.
T Pulse width 5.0µs, single shot.
Case Outline — TO-220 FULLPAK
1 0 .6 0 (.4 1 7 )
1 0 .4 0 (.4 0 9 )
ø
3 .4 0 (.1 3 3 )
3 .1 0 (.1 2 3 )
4 .8 0 (.1 8 9 )
4 .6 0 (.1 8 1 )
-A 3 .7 0 (.1 4 5 )
3 .2 0 (.1 2 6 )
1 6 .0 0 (.6 3 0 )
1 5 .8 0 (.6 2 2 )
2 .8 0 (.1 1 0 )
2 .6 0 (.1 0 2 )
L E A D A S S IG N M E N T S
LEAD ASSIGMENTS
1 - GA TE
1- GATE
2 - D R A IN
2- COLLECTOR
3 - SOURCE
3- EMITTER
7 .1 0 (.2 8 0 )
6 .7 0 (.2 6 3 )
1 .1 5 (.0 4 5)
M IN .
NOTES :
1 D IM E N S IO N IN G & T O L E R A N C IN G
P E R A N S I Y 1 4.5 M , 1 9 8 2
1
2
3
2 C O N T R O L L IN G D IM E N S IO N : IN C H .
3 .3 0 (.1 3 0 )
3 .1 0 (.1 2 2 )
-B -
1 3 .7 0 (.5 4 0 )
1 3 .5 0 (.5 3 0 )
C
A
1 .4 0 (.0 5 5 )
3X
1 .0 5 (.0 4 2 )
0 .9 0 (.0 35 )
3 X 0 .7 0 (.0 28 )
0 .2 5 (.0 1 0 )
2 .5 4 (.1 0 0 )
2X
3X
M
A M
B
0 .4 8 (.0 1 9 )
0 .4 4 (.0 1 7 )
2 .8 5 (.1 1 2 )
2 .6 5 (.1 0 4 )
D
B
M IN IM U M C R E E P A G E
D IS T A N C E B E T W E E N
A -B -C -D = 4 .8 0 (.1 89 )
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936
Data and specifications subject to change without notice. 10/00
10
www.irf.com