PD -9.1668A IRG4ZC70UD INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features ● ● ● ● ● ● ● UltraFast IGBT optimized for high switching frequencies n-channel IGBT co-packaged with HEXFRED™ ultrafast, ultra-soft recovery antiparallel diodes for use in bridge configurations Low gate charge G Low profile low inductance SMD-10 package E(k) Separated control & Power-connections for easy paralleling Inherently coplanar pins and tab Easy solder inspection and cleaning Surface Mountable UltraFast CoPack IGBT C VCES = 600V VCE(ON)typ = 1.5V @VGE = 15V, IC = 50A E Benefits ● ● ● ● Highest power density and efficiency available HEXFRED diodes optimized for performance with IGBTs; Minimized recovery characteristics IGBTs optimized for specific application conditions; high input impedance requires low gate drive power Low noise and interference SMD-10 Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C I CM ILM IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current ➀ Clamped Inductive Load Current ➁ Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Max. Units 600 100 50 400 400 50 400 ± 20 350 140 -55 to + 150 V A V W °C Thermal Resistance Parameter RθJC RθJC RθCS Wt Junction-to-Case - IGBT Junction-to-Case - Diode SMD-10 Case-to-Heatsink (typical), * Weight Notes: ➀ Repetitive rating: VGE = 20V; pulse width limited by maximum junction temperature (figure 20) ➁ VCC = 80%(VCES), VGE = 20V, L=10µH, RG= 5.0Ω (figure 19) Min. Typ. Max. — — — — — — 0.59 6.0(0.21) 0.36 0.69 — — ➂ Pulse width ≤ 80µs; duty factor ≤ 0.1%. ➃ Pulse width 5.0µs, single shot. * Assumes device soldered to 3.0 oz. Cu on 3.0mm IMS/Aluminum board, mounted to flat, greased heatsink. Units °C/W g (oz) IRG4ZC70UD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Min. Typ. Max. Units Collector-to-Emitter Breakdown Voltage ➂ 600 — — V Temperature Coeff. of Breakdown Voltage — 0.36 — V/°C Collector-to-Emitter Saturation Voltage — 1.49 1.9 — 1.80 — V — 1.47 — Gate Threshold Voltage 3.0 — 6.0 Temperature Coeff. of Threshold Voltage — -7.6 — mV/°C Forward Transconductance ➃ 34 52 — S Zero Gate Voltage Collector Current — — 250 µA — — 1.3 mA Diode Forward Voltage Drop — 1.24 1.5 V — 1.16 1.3 Gate-to-Emitter Leakage Current — — ±100 nA Conditions VGE = 0V, IC = 250µA VGE = 0V, IC = 1.0mA IC = 50A VGE = 15V IC = 100A see figure 2, 5 IC = 50A, TJ = 150°C VCE = VGE, IC = 250µA VCE = VGE, IC = 250µA VCE = 100V, IC = 50A VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150°C IC = 50A see figure 13 IC = 50A, TJ = 150°C VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres t rr I rr Q rr di(rec)M/dt 2 Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Min. — — — — — — — — — — — — — — — — — — — — — Diode Peak Reverse Recovery Current — — Diode Reverse Recovery Charge — — Diode Peak Rate of Fall of Recovery — During tb — Typ. 430 48 130 71 41 250 110 1.59 1.78 3.37 68 43 370 130 4.5 2.0 7400 730 90 90 120 7.3 11 360 780 370 220 Max. Units Conditions 640 IC = 50A 72 nC VCC = 400V see figure 8 190 VGE = 15V — TJ = 25°C — ns IC = 50A, VCC = 480V 370 VGE = 15V, RG = 5.0Ω 220 Energy losses include "tail" and — diode reverse recovery. — mJ see figures 9, 10, 18 4.7 — TJ = 150°C, see figures 11, 18 — ns IC = 50A, VCC = 480V — VGE = 15V, RG = 5.0Ω — Energy losses include "tail" and — mJ diode reverse recovery. — nH — VGE = 0V — pF VCC = 30V see figure 7 — ƒ = 1.0MHz 140 ns TJ = 25°C see figure 180 TJ = 125°C 14 IF = 50A 11 A TJ = 25°C see figure 16 TJ = 125°C 15 VR = 200V 550 nC TJ = 25°C see figure 1200 TJ = 125°C 16 di/dt = 200Aµs — A/µs TJ = 25°C see figure — TJ = 125°C 17 www.irf.com IRG4ZC70UD 35 F or b oth: LOAD CURRENT (A) 30 D uty c y c le : 50 % T J = 12 5° C T sink = 90 °C G a te d riv e a s s pe c ified 25 P ow er D is s ipation = 27 W S q u a re w a v e : 20 60% of rated voltage 15 I 10 Id e a l d io d es 5 0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) I C , Collector-to-Emitter Current (A) TJ = 25 ° C TJ = 150 ° C 10 V GE = 15V 20µs PULSE WIDTH 1.0 2.0 3.0 4.0 5.0 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com TJ = 150 ° C 100 100 1 0.0 I C , Collector-to-Emitter Current (A) 1000 1000 TJ = 25 ° C 10 1 5.0 V CC = 50V 5µs PULSE WIDTH 6.0 7.0 8.0 9.0 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4ZC70UD 2.5 VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 100 80 60 40 20 0 25 50 75 100 125 150 VGE = 15V 80 us PULSE WIDTH 2.0 IC = 100 A IC = 50 A 1.5 IC = 25 A 1.0 -60 -40 -20 Fig. 4 - Maximum Collector Current vs. Case Temperature 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (° C) TC , Case Temperature ( ° C) Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 1 D = 0.50 0.1 0.01 0.001 0.00001 0.20 0.10 0.05 0.02 0.01 P DM t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = t 1 / t2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4ZC70UD VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc C, Capacitance (pF) 12000 10000 Cies 8000 6000 Coes 4000 2000 Cres 20 VGE , Gate-to-Emitter Voltage (V) 14000 16 12 8 4 0 0 1 10 100 0 VCE , Collector-to-Emitter Voltage (V) V CC V GE TJ 7.0 I C 100 = 480V = 15V = 25 ° C = 50A 6.0 5.0 4.0 3.0 0 10 20 30 40 RG , Gate Resistance ( Ω ) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 200 300 400 500 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage Total Switching Losses (mJ) 8.0 100 QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage Total Switching Losses (mJ) VCC = 400V I C = 50A 50 RG = 5.0Ω Ohm VGE = 15V VCC = 480V IC = 100 A 10 IC = 50 A IC = 25 A 1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature °( C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4ZC70UD RG TJ VCC 10 VGE 1000 = Ohm 5.0Ω = 150 ° C = 480V = 15V I C , Collector-to-Emitter Current (A) Total Switching Losses (mJ) 12 8 VGE = 20V T J = 125 o C 100 6 4 2 10 SAFE OPERATING AREA 0 0 20 40 60 80 1 100 1 I C , Collector-to-emitter Current (A) 10 100 1000 VCE , Collector-to-Emitter Voltage (V) Fig. 12 - Turn-Off SOA Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Instantaneous forward current - IF (A) 1000 100 TJ = 150°C TJ = 125°C TJ = 25°C 10 1 0.0 0.4 0.8 1.2 1.6 2.0 F orward V oltage D rop - V F M (V ) Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4ZC70UD 100 150 I F = 100A I F = 50A I F = 100A I F = 25A 120 I F = 50A I F = 25A trr- (nC) Irr- ( A) 90 10 60 30 VR = 2 00 V T J = 1 2 5°C T J = 2 5 °C V R = 2 00 V T J = 1 2 5°C T J = 2 5 °C 0 100 di f /dt - (A /µ s) 1 100 1000 1000 di f /dt - (A/µ s) Fig. 15 - Typical Recovery Current vs. dif/dt Fig. 14 - Typical Reverse Recovery vs. dif/dt 10000 4000 VR = 2 00 V T J = 1 2 5°C T J = 2 5 °C V R = 2 00 V T J = 1 2 5°C T J = 2 5 °C IF = 100A I F = 100A 3000 I F = 50A di (rec) M/dt- (A /µs) I F = 50A Qrr- (nC) IF = 25A 2000 I F = 25A 1000 1000 0 100 100 100 di f /dt - (A /µ s) 1000 Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com 1000 di f /dt - (A/µ s) Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7 IRG4ZC70UD 90% V ge Same type device as D .U.T. +V ge V ce 430µF 80% of Vce D .U .T. Ic 90% Ic 10% V ce Ic 5% Ic td (off) tf E off = Fig. 18a - Test Circuit for Measurement of ∫ Vce Ic dt t1+5µ S V ce ic dt t1 ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf G A T E V O LT A G E D .U .T . 10% + V g trr Q rr = Ic trr id Ic dtdt tx ∫ +V g tx 10% V c c 10% Irr Vcc D U T V O LT A G E AND CURRENT Vce V pk Irr Vcc 10% Ic Ipk 90% Ic Ic D IO D E R E C O V E R Y W AVEFORMS tr td(on) 5% V c e t1 ∫ t2 c e ieIc dt dt E on = VVce t1 t2 E rec = D IO D E R E V E R S E RECOVERY ENERG Y t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 ∫ Vc Ic dt t4 V d id dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4ZC70UD V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T . V O LT A G E IN D .U .T . C U R R E N T IN D 1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit D.U.T. L 1000V Vc* RL= 480V 4 X IC @25°C 0 - 480V 50V 600 0µ F 100 V Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4ZC70UD Case Outline — SMD-10 17.30 Dimensions are shown in millimeters 14.20 E(k) G 4.27 n/c 0.90 5.55 29.00 C 0.90 E E Recommended footprint WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change without notice. 3/98 10 www.irf.com