IRF IRG4ZC70UD

PD -9.1668A
IRG4ZC70UD
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
●
●
●
●
●
●
●
UltraFast IGBT optimized for high switching frequencies n-channel
IGBT co-packaged with HEXFRED™ ultrafast,
ultra-soft recovery antiparallel diodes for use in
bridge configurations
Low gate charge
G
Low profile low inductance SMD-10 package
E(k)
Separated control & Power-connections for
easy paralleling
Inherently coplanar pins and tab
Easy solder inspection and cleaning
Surface Mountable
UltraFast CoPack IGBT
C
VCES = 600V
VCE(ON)typ = 1.5V
@VGE = 15V, IC = 50A
E
Benefits
●
●
●
●
Highest power density and efficiency available
HEXFRED diodes optimized for performance with IGBTs;
Minimized recovery characteristics
IGBTs optimized for specific application conditions; high input impedance
requires low gate drive power
Low noise and interference
SMD-10
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
I CM
ILM
IF @ TC = 100°C
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Breakdown Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current ➀
Clamped Inductive Load Current ➁
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Max.
Units
600
100
50
400
400
50
400
± 20
350
140
-55 to + 150
V
A
V
W
°C
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
Wt
Junction-to-Case - IGBT
Junction-to-Case - Diode
SMD-10 Case-to-Heatsink (typical), *
Weight
Notes: ➀ Repetitive rating: VGE = 20V; pulse width limited by
maximum junction temperature (figure 20)
➁ VCC = 80%(VCES), VGE = 20V, L=10µH, RG= 5.0Ω
(figure 19)
Min.
Typ.
Max.
—
—
—
—
—
—
0.59
6.0(0.21)
0.36
0.69
—
—
➂ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
➃ Pulse width 5.0µs, single shot.
* Assumes device soldered to 3.0 oz. Cu on 3.0mm IMS/Aluminum board, mounted to flat, greased heatsink.
Units
°C/W
g (oz)
IRG4ZC70UD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
VFM
IGES
Parameter
Min. Typ. Max. Units
Collector-to-Emitter Breakdown Voltage ➂ 600 —
—
V
Temperature Coeff. of Breakdown Voltage — 0.36 — V/°C
Collector-to-Emitter Saturation Voltage
— 1.49 1.9
— 1.80 —
V
— 1.47 —
Gate Threshold Voltage
3.0
—
6.0
Temperature Coeff. of Threshold Voltage
— -7.6 — mV/°C
Forward Transconductance ➃
34
52
—
S
Zero Gate Voltage Collector Current
—
—
250
µA
—
—
1.3
mA
Diode Forward Voltage Drop
— 1.24 1.5
V
— 1.16 1.3
Gate-to-Emitter Leakage Current
—
— ±100 nA
Conditions
VGE = 0V, IC = 250µA
VGE = 0V, IC = 1.0mA
IC = 50A
VGE = 15V
IC = 100A
see figure 2, 5
IC = 50A, TJ = 150°C
VCE = VGE, IC = 250µA
VCE = VGE, IC = 250µA
VCE = 100V, IC = 50A
VGE = 0V, VCE = 600V
VGE = 0V, VCE = 600V, TJ = 150°C
IC = 50A
see figure 13
IC = 50A, TJ = 150°C
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
t rr
I rr
Q rr
di(rec)M/dt
2
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Diode Peak Reverse Recovery Current —
—
Diode Reverse Recovery Charge
—
—
Diode Peak Rate of Fall of Recovery
—
During tb
—
Typ.
430
48
130
71
41
250
110
1.59
1.78
3.37
68
43
370
130
4.5
2.0
7400
730
90
90
120
7.3
11
360
780
370
220
Max. Units
Conditions
640
IC = 50A
72
nC VCC = 400V
see figure 8
190
VGE = 15V
—
TJ = 25°C
—
ns
IC = 50A, VCC = 480V
370
VGE = 15V, RG = 5.0Ω
220
Energy losses include "tail" and
—
diode reverse recovery.
—
mJ see figures 9, 10, 18
4.7
—
TJ = 150°C, see figures 11, 18
—
ns
IC = 50A, VCC = 480V
—
VGE = 15V, RG = 5.0Ω
—
Energy losses include "tail" and
—
mJ diode reverse recovery.
—
nH
—
VGE = 0V
—
pF
VCC = 30V
see figure 7
—
ƒ = 1.0MHz
140
ns
TJ = 25°C see figure
180
TJ = 125°C
14
IF = 50A
11
A
TJ = 25°C see figure
16
TJ = 125°C
15
VR = 200V
550
nC TJ = 25°C see figure
1200
TJ = 125°C
16
di/dt = 200Aµs
—
A/µs TJ = 25°C see figure
—
TJ = 125°C
17
www.irf.com
IRG4ZC70UD
35
F or b oth:
LOAD CURRENT (A)
30
D uty c y c le : 50 %
T J = 12 5° C
T sink = 90 °C
G a te d riv e a s s pe c ified
25
P ow er D is s ipation = 27 W
S q u a re w a v e :
20
60% of rated
voltage
15
I
10
Id e a l d io d es
5
0
0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
I C , Collector-to-Emitter Current (A)
TJ = 25 ° C
TJ = 150 ° C
10
V GE = 15V
20µs PULSE WIDTH
1.0
2.0
3.0
4.0
5.0
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
TJ = 150 ° C
100
100
1
0.0
I C , Collector-to-Emitter Current (A)
1000
1000
TJ = 25 ° C
10
1
5.0
V CC = 50V
5µs PULSE WIDTH
6.0
7.0
8.0
9.0
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4ZC70UD
2.5
VCE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current(A)
100
80
60
40
20
0
25
50
75
100
125
150
VGE = 15V
80 us PULSE WIDTH
2.0
IC = 100 A
IC = 50 A
1.5
IC = 25 A
1.0
-60 -40 -20
Fig. 4 - Maximum Collector Current vs.
Case Temperature
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature (° C)
TC , Case Temperature ( ° C)
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
1
D = 0.50
0.1
0.01
0.001
0.00001
0.20
0.10
0.05
0.02
0.01
P DM
t1
SINGLE PULSE
(THERMAL RESPONSE)
t2
Notes:
1. Duty factor D = t 1 / t2
2. Peak TJ = PDM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4ZC70UD
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
C, Capacitance (pF)
12000
10000
Cies
8000
6000
Coes
4000
2000
Cres
20
VGE , Gate-to-Emitter Voltage (V)
14000
16
12
8
4
0
0
1
10
100
0
VCE , Collector-to-Emitter Voltage (V)
V CC
V GE
TJ
7.0 I C
100
= 480V
= 15V
= 25 ° C
= 50A
6.0
5.0
4.0
3.0
0
10
20
30
40
RG , Gate Resistance ( Ω )
Fig. 9 - Typical Switching Losses vs.
Gate Resistance
www.irf.com
200
300
400
500
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Total Switching Losses (mJ)
8.0
100
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
Total Switching Losses (mJ)
VCC = 400V
I C = 50A
50
RG = 5.0Ω
Ohm
VGE = 15V
VCC = 480V
IC = 100 A
10
IC = 50 A
IC = 25 A
1
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature °( C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4ZC70UD
RG
TJ
VCC
10
VGE
1000
= Ohm
5.0Ω
= 150 ° C
= 480V
= 15V
I C , Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
12
8
VGE = 20V
T J = 125 o C
100
6
4
2
10
SAFE OPERATING AREA
0
0
20
40
60
80
1
100
1
I C , Collector-to-emitter Current (A)
10
100
1000
VCE , Collector-to-Emitter Voltage (V)
Fig. 12 - Turn-Off SOA
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Instantaneous forward current - IF (A)
1000
100
TJ = 150°C
TJ = 125°C
TJ = 25°C
10
1
0.0
0.4
0.8
1.2
1.6
2.0
F orward V oltage D rop - V F M (V )
Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4ZC70UD
100
150
I F = 100A
I F = 50A
I F = 100A
I F = 25A
120
I F = 50A
I F = 25A
trr- (nC)
Irr- ( A)
90
10
60
30
VR = 2 00 V
T J = 1 2 5°C
T J = 2 5 °C
V R = 2 00 V
T J = 1 2 5°C
T J = 2 5 °C
0
100
di f /dt - (A /µ s)
1
100
1000
1000
di f /dt - (A/µ s)
Fig. 15 - Typical Recovery Current vs. dif/dt
Fig. 14 - Typical Reverse Recovery vs. dif/dt
10000
4000
VR = 2 00 V
T J = 1 2 5°C
T J = 2 5 °C
V R = 2 00 V
T J = 1 2 5°C
T J = 2 5 °C
IF = 100A
I F = 100A
3000
I F = 50A
di (rec) M/dt- (A /µs)
I F = 50A
Qrr- (nC)
IF = 25A
2000
I F = 25A
1000
1000
0
100
100
100
di f /dt - (A /µ s)
1000
Fig. 16 - Typical Stored Charge vs. dif/dt
www.irf.com
1000
di f /dt - (A/µ s)
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
7
IRG4ZC70UD
90% V ge
Same type
device as
D .U.T.
+V ge
V ce
430µF
80%
of Vce
D .U .T.
Ic
90% Ic
10% V ce
Ic
5% Ic
td (off)
tf
E off =
Fig. 18a - Test Circuit for Measurement of
∫ Vce Ic dt
t1+5µ S
V ce ic dt
t1
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O LT A G E D .U .T .
10% + V g
trr
Q rr =
Ic
trr
id
Ic dtdt
tx
∫
+V g
tx
10% V c c
10% Irr
Vcc
D U T V O LT A G E
AND CURRENT
Vce
V pk
Irr
Vcc
10% Ic
Ipk
90% Ic
Ic
D IO D E R E C O V E R Y
W AVEFORMS
tr
td(on)
5% V c e
t1
∫
t2
c e ieIc
dt dt
E on = VVce
t1
t2
E rec =
D IO D E R E V E R S E
RECOVERY ENERG Y
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
∫ Vc Ic dt
t4
V d id dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4ZC70UD
V g G A T E S IG N A L
D E V IC E U N D E R T E S T
C U R R E N T D .U .T .
V O LT A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
1000V
Vc*
RL=
480V
4 X IC @25°C
0 - 480V
50V
600 0µ F
100 V
Figure 19. Clamped Inductive Load Test Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
IRG4ZC70UD
Case Outline — SMD-10
17.30
Dimensions are shown in millimeters
14.20
E(k) G
4.27
n/c
0.90
5.55
29.00
C
0.90
E
E
Recommended footprint
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371
http://www.irf.com/
Data and specifications subject to change without notice.
3/98
10
www.irf.com