PD - 95011 SMPS MOSFET IRFP26N60LPbF HEXFET® Power MOSFET Applications • Zero Voltage Switching SMPS • Telecom and Server Power Supplies • Uninterruptible Power Supplies • Motor Control applications • Lead-Free VDSS RDS(on) typ. Trr typ. ID 600V 170ns 210mΩ Features and Benefits • SuperFast body diode eliminates the need for external diodes in ZVS applications. • Lower Gate charge results in simpler drive requirements. • Enhanced dv/dt capabilities offer improved ruggedness. • Higher Gate voltage threshold offers improved noise immunity . 26A TO-247AC Absolute Maximum Ratings Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 26 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V Pulsed Drain Current IDM 17 100 PD @TC = 25°C Power Dissipation 470 W 3.8 ±30 W/°C V 21 -55 to + 150 V/ns c VGS Linear Derating Factor Gate-to-Source Voltage d dv/dt TJ Peak Diode Recovery dv/dt TSTG Storage Temperature Range Operating Junction and °C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting torque, 6-32 or M3 screw 1.1(10) Diode Characteristics Symbol Parameter A N•m (lbf•in) Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 26 ISM (Body Diode) Pulsed Source Current ––– ––– 100 showing the integral reverse c MOSFET symbol A (Body Diode) D G VSD Diode Forward Voltage ––– ––– 1.5 V p-n junction diode. TJ = 25°C, IS = 26A, VGS = 0V trr Reverse Recovery Time ––– 170 250 ns TJ = 25°C, IF = 26A ––– 210 320 ––– 670 1000 ––– 1050 1570 Qrr Reverse Recovery Charge IRRM Reverse Recovery Current ton Forward Turn-On Time www.irf.com ––– 7.3 11 f S f T = 25°C, I = 26A, V = 0V f T = 125°C, di/dt = 100A/µs f TJ = 125°C, di/dt = 100A/µs nC J S GS J A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 1 2/12/04 IRFP26N60LPbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V(BR)DSS Drain-to-Source Breakdown Voltage ∆V(BR)DSS/∆TJ RDS(on) ––– Breakdown Voltage Temp. Coefficient ––– 0.33 ––– V/°C Reference to 25°C, ID = 1mA Static Drain-to-Source On-Resistance ––– 210 250 VGS(th) Gate Threshold Voltage 3.0 ––– 5.0 mΩ V IDSS Drain-to-Source Leakage Current ––– ––– 50 µA VDS = 600V, VGS = 0V ––– ––– 2.0 mA VDS = 480V, VGS = 0V, TJ = 125°C Gate-to-Source Forward Leakage ––– ––– 100 nA VGS = 30V Gate-to-Source Reverse Leakage ––– ––– -100 Internal Gate Resistance ––– 0.8 ––– Ω f = 1MHz, open drain IGSS RG ––– V Conditions 600 VGS = 0V, ID = 250µA VGS = 10V, ID = 16A f VDS = VGS, ID = 250µA VGS = -30V Dynamic @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units 13 ––– ––– ––– ––– 180 ––– ––– 61 S Conditions gfs Qg Forward Transconductance VDS = 50V, ID = 16A Total Gate Charge Qgs Gate-to-Source Charge Qgd Gate-to-Drain ("Miller") Charge ––– ––– 85 VGS = 10V, See Fig. 7 & 15 td(on) Turn-On Delay Time ––– 31 ––– VDD = 300V tr Rise Time ––– 110 ––– td(off) Turn-Off Delay Time ––– 47 ––– RG = 4.3Ω tf Fall Time ––– 42 ––– VGS = 10V, See Fig. 11a & 11b Ciss Input Capacitance ––– 5020 ––– VGS = 0V Coss Output Capacitance ––– 450 ––– Crss Reverse Transfer Capacitance ––– 34 ––– Coss eff. Effective Output Capacitance ––– 230 ––– Coss eff. (ER) Effective Output Capacitance ––– 170 ––– ID = 26A nC ns VDS = 480V f ID = 26A f VDS = 25V pF ƒ = 1.0MHz, See Fig. 5 VGS = 0V,VDS = 0V to 480V g (Energy Related) Avalanche Characteristics Symbol EAS Parameter Single Pulse Avalanche Energy IAR Avalanche Current EAR Repetitive Avalanche Energy c d c Typ. ––– Max. 570 Units mJ ––– 26 A ––– 47 mJ Units Thermal Resistance Typ. Max. RθJC Symbol Junction-to-Case Parameter ––– 0.27 RθCS Case-to-Sink, Flat, Greased Surface 0.24 ––– RθJA Junction-to-Ambient ––– 40 Notes: Repetitive rating; pulse width limited by max. junction temperature. (See Fig. 11) Starting TJ = 25°C, L = 1.7mH, RG = 25Ω, IAS = 26A, dv/dt = 21V/ns. (See Figure 12a) ISD ≤ 26A, di/dt ≤ 480A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C. 2 °C/W Pulse width ≤ 300µs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% V DSS . Coss eff.(ER) is a fixed capacitance that stores the same energy as Coss while VDS is rising from 0 to 80% V DSS . www.irf.com IRFP26N60LPbF 100 1000 100 10 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 12V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 1 5.5V 0.1 10 BOTTOM VGS 15V 12V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 5.5V 1 20µs PULSE WIDTH Tj = 150°C 20µs PULSE WIDTH Tj = 25°C 0.1 0.01 0.1 1 10 0.1 100 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 3.0 T J = 150°C 10.00 TJ = 25°C 1.00 VDS = 50V 20µs PULSE WIDTH ID = 26A 2.5 (Normalized) 100.00 RDS(on) , Drain-to-Source On Resistance 1000.00 ID, Drain-to-Source Current (Α) 1 VGS = 10V 2.0 1.5 1.0 0.5 0.10 2.0 4.0 6.0 8.0 10.0 12.0 14.0 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 16.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRFP26N60LPbF 100000 25 Coss = Cds + Cgd 10000 Ciss 20 Energy (µJ) C, Capacitance(pF) 30 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, C ds SHORTED Crss = Cgd 1000 Coss 15 10 100 5 Crss 0 10 1 10 100 0 1000 VDS, Drain-to-Source Voltage (V) 300 400 500 600 700 Fig 6. Typ. Output Capacitance Stored Energy vs. VDS 12.0 1000.00 10.0 VDS= 480V VDS= 300V ISD, Reverse Drain Current (A) ID= 26A VGS , Gate-to-Source Voltage (V) 200 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 100.00 VDS= 120V 8.0 6.0 4.0 2.0 0.0 T J = 150°C 10.00 T J = 25°C 1.00 VGS = 0V 0.10 0 25 50 75 100 125 Q G Total Gate Charge (nC) Fig 7. Typical Gate Charge Vs. Gate-to-Source Voltage 4 100 150 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VSD, Source-to-Drain Voltage (V) Fig 8. Typical Source-Drain Diode Forward Voltage www.irf.com IRFP26N60LPbF 30 ID, Drain-to-Source Current (A) 1000 OPERATION IN THIS AREA LIMITED BY R DS(on) 25 ID, Drain Current (A) 100 100µsec 10 1msec 1 Tc = 25°C Tj = 150°C Single Pulse 20 15 10 5 10msec 0 0.1 1 10 100 1000 10000 25 Fig 9. Maximum Safe Operating Area VDS VGS RG RD 75 100 125 150 Fig 10. Maximum Drain Current vs. Case Temperature VDS 90% D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 11a. Switching Time Test Circuit www.irf.com 50 T C , Case Temperature (°C) VDS, Drain-to-Source Voltage (V) 10% VGS td(on) tr t d(off) tf Fig 11b. Switching Time Waveforms 5 IRFP26N60LPbF Thermal Response ( Z thJC ) 1 0.1 D = 0.50 0.20 0.10 0.05 0.01 0.02 0.01 P DM t1 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 t2 Notes: 1. Duty factor D = 2. Peak T t1/ t 2 J = P DM x Z thJC +T C 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 12. Maximum Effective Transient Thermal Impedance, Junction-to-Case VGS(th) Gate threshold Voltage (V) 6.0 5.0 4.0 ID = 250µA 3.0 2.0 -75 -50 -25 0 25 50 75 100 125 150 T J , Temperature ( °C ) Fig 13. Threshold Voltage vs. Temperature 6 www.irf.com 1 IRFP26N60LPbF EAS , Single Pulse Avalanche Energy (mJ) 1050 ID 12A 16A BOTTOM 26A TOP 900 750 600 450 300 150 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14a. Maximum Avalanche Energy vs. Drain Current 15V V(BR)DSS DRIVER L VDS D.U.T RG + - VDD IAS 20V tp tp A 0.01Ω I AS Fig 14b. Unclamped Inductive Test Circuit Fig 14c. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. QG 50KΩ 12V VGS V .2µF .3µF D.U.T. QGS + V - DS QGD VG VGS 3mA IG ID Current Sampling Resistors Fig 15a. Gate Charge Test Circuit www.irf.com Charge Fig 15b. Basic Gate Charge Waveform 7 IRFP26N60LPbF Peak Diode Recovery dv/dt Test Circuit + D.U.T Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + - - + RG • • • • Driver Gate Drive P.W. + dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test Period D= - VDD P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 16. For N-Channel HEXFET® Power MOSFETs 8 www.irf.com IRFP26N60LPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) -D- 3.65 (.143) 3.55 (.140) 15.90 (.626) 15.30 (.602) -B- -A- 0.25 (.010) M D B M 2.50 (.089) 1.50 (.059) 4 5.50 (.217) 20.30 (.800) 19.70 (.775) 2X 1 2 5.30 (.209) 4.70 (.185) NOTES: 5.50 (.217) 4.50 (.177) 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH. 3 CONFORMS TO JEDEC OUTLINE TO-247-AC. 3 -C- 14.80 (.583) 14.20 (.559) 2.40 (.094) 2.00 (.079) 2X 5.45 (.215) 2X 4.30 (.170) 3.70 (.145) 0.80 (.031) 3X 0.40 (.016) 1.40 (.056) 3X 1.00 (.039) 0.25 (.010) M 2.60 (.102) 2.20 (.087) C A S 3.40 (.133) 3.00 (.118) LEAD ASSIGNMENTS Hexfet IGBT 1 -LEAD GateASSIGNMENTS 1 - Gate 1 GATE 2 - Drain 2 - Collector 2 - DRAIN 3 - Source 3 - Emitter 3 - SOURCE 4 - Drain 4 - DRAIN4 - Collector TO-247AC Part Marking Information EXAMPLE: T HIS IS AN IRFPE30 WIT H ASSEMBLY LOT CODE 5657 ASSEMBLED ON WW 35, 2000 IN THE AS SEMBLY LINE "H" Note: "P" in assembly line position indicates "Lead-Free" INT ERNATIONAL RECT IFIER LOGO PART NUMBER IRFPE30 56 035H 57 ASSEMBLY LOT CODE DAT E CODE YEAR 0 = 2000 WEEK 35 LINE H TO-247AC package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.2/04 www.irf.com 9