PD - 97004 IRFB4233PbF PDP SWITCH Features l Advanced process technology l Key parameters optimized for PDP Sustain, Energy Recovery and Pass Switch Applications l Low EPULSE rating to reduce power dissipation in PDP Sustain, Energy Recovery and Pass Switch Applications l Low QG for fast response l High repetitive peak current capability for reliable operation l Short fall & rise times for fast switching l175°C operating junction temperature for improved ruggedness l Repetitive avalanche capability for robustness and reliability Key Parameters VDS min 230 V VDS (Avalanche) typ. 276 RDS(ON) typ. @ 10V 31 V m: IRP max @ TC= 100°C 114 A TJ max 175 °C D G S TO-220AB Description This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch applications in Plasma Display Panels. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area and low EPULSE rating. Additional features of this MOSFET are 175°C operating junction temperature and high repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for PDP driving applications. Absolute Maximum Ratings Max. Units Gate-to-Source Voltage ±30 V Continuous Drain Current, VGS @ 10V 56 A ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 39 Parameter VGS ID @ TC = 25°C IDM Pulsed Drain Current c 220 IRP @ TC = 100°C Repetitive Peak Current g 114 PD @TC = 25°C Power Dissipation 370 PD @TC = 100°C Power Dissipation 190 Linear Derating Factor 2.5 W/°C TJ Operating Junction and -40 to + 175 °C TSTG Storage Temperature Range 300 Soldering Temperature for 10 seconds Mounting Torque, 6-32 or M3 Screw W 10lbxin (1.1Nxm) N Thermal Resistance Parameter RθJC RθCS RθJA Junction-to-Case f Case-to-Sink, Flat, Greased Surface Junction-to-Ambient f Typ. Max. Units ––– 0.50 ––– 0.402 ––– 62 °C/W Notes through are on page 8 www.irf.com 1 6/8/05 IRFB4233PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions VGS = 0V, ID = 250µA BVDSS Drain-to-Source Breakdown Voltage 230 ––– ––– ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 200 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 31 37 mΩ VGS = 10V, ID = 28A e VGS(th) Gate Threshold Voltage 3.0 ––– 5.0 V VDS = VGS, ID = 250µA ∆VGS(th)/∆TJ Gate Threshold Voltage Coefficient ––– -14 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 5.0 µA ––– ––– 150 ––– ––– 100 IGSS Gate-to-Source Forward Leakage V mV/°C Reference to 25°C, ID = 1mA VDS = 184V, VGS = 0V VDS = 184V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Gate-to-Source Reverse Leakage ––– ––– -100 gfs Forward Transconductance 83 ––– ––– S Qg Total Gate Charge ––– 120 170 nC VDD = 115V, ID = 39A, VGS = 10Ve Qgd Gate-to-Drain Charge ––– 44 ––– tst Shoot Through Blocking Time 100 ––– ––– ns VDD = 184V, VGS = 15V, RG= 4.7Ω ––– 460 ––– ––– 970 ––– EPULSE Energy per Pulse Ciss Input Capacitance ––– 5510 ––– Coss Output Capacitance ––– 480 ––– VDS = 25V, ID = 39A L = 220nH, C= 0.4µF, VGS = 15V µJ VDS = 184V, RG= 4.7Ω, TJ = 25°C L = 220nH, C= 0.4µF, VGS = 15V VDS = 184V, RG= 4.7Ω, TJ = 100°C VGS = 0V pF VDS = 25V Crss Reverse Transfer Capacitance ––– 220 ––– ƒ = 1.0MHz, Coss eff. Effective Output Capacitance ––– 340 ––– VGS = 0V, VDS = 0V to 184V LD Internal Drain Inductance ––– 4.5 ––– Between lead, nH LS Internal Source Inductance ––– 7.5 ––– D 6mm (0.25in.) G from package S and center of die contact Avalanche Characteristics Parameter Typ. Max. Units 250 mJ EAS Single Pulse Avalanche Energyd ––– EAR Repetitive Avalanche Energy c ––– 39 mJ VDS(Avalanche) Repetitive Avalanche Voltagec 276 ––– V IAS Avalanche Currentd ––– 39 A Diode Characteristics Parameter IS @ TC = 25°C Continuous Source Current Min. Typ. Max. Units ––– ––– 56 ––– ––– 220 (Body Diode) ISM Pulsed Source Current Conditions MOSFET symbol A showing the integral reverse p-n junction diode. (Body Diode)c VSD Diode Forward Voltage ––– ––– 1.0 V TJ = 25°C, IS = 39A, VGS = 0V e trr Reverse Recovery Time ––– 190 280 ns TJ = 25°C, IF = 39A, VDD = 50V Qrr Reverse Recovery Charge ––– 760 1140 nC di/dt = 100A/µs e 2 www.irf.com IRFB4233PbF 1000 1000 100 10 BOTTOM VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 5.3V 1 0.1 5.3V 100 BOTTOM 10 5.3V ≤ 60µs PULSE WIDTH Tj = 25°C 0.01 0.1 1 10 ≤ 60µs PULSE WIDTH Tj = 175°C 1 100 0.1 VDS , Drain-to-Source Voltage (V) 10 100 Fig 2. Typical Output Characteristics 1000.00 4.0 RDS(on) , Drain-to-Source On Resistance ID, Drain-to-Source Current(Α) 1 VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 100.00 TJ = 175°C 1.00 TJ = 25°C 0.10 VDS = 25V ≤ 60µs PULSE WIDTH 3.0 4.0 5.0 6.0 7.0 ID = 39A VGS = 10V 3.0 (Normalized) 10.00 0.01 8.0 2.0 1.0 0.0 9.0 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature 900 1000 L = 220nH C = 0.4µF 100°C 25°C 800 700 L = 220nH C = Variable 100°C 25°C 800 Energy per pulse (µJ) Energy per pulse (µJ) VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 5.3V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 600 500 400 600 400 200 300 200 0 130 140 150 160 170 180 190 VDS, Drain-to -Source Voltage (V) Fig 5. Typical EPULSE vs. Drain-to-Source Voltage www.irf.com 120 130 140 150 160 170 180 ID, Peak Drain Current (A) Fig 6. Typical EPULSE vs. Drain Current 3 IRFB4233PbF 1200 1000.0 Energy per pulse (µJ) 1000 ISD , Reverse Drain Current (A) L = 220nH C= 0.4µF C= 0.3µF C= 0.2µF 800 600 400 200 100.0 TJ = 175°C 10.0 1.0 TJ = 25°C VGS = 0V 0 0.1 25 50 75 100 125 150 0.2 Temperature (°C) Fig 7. Typical EPULSE vs.Temperature 10000 VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) 20 Coss = Cds + Cgd 6000 0.6 0.8 1.0 1.2 Fig 8. Typical Source-Drain Diode Forward Voltage VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 8000 0.4 VSD, Source-to-Drain Voltage (V) Ciss 4000 2000 ID= 39A VDS = 184V 16 VDS= 115V VDS= 46V 12 8 4 Coss Crss 0 1 0 10 100 0 1000 Fig 9. Typical Capacitance vs.Drain-to-Source Voltage 120 160 200 Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage 1000 ID, Drain-to-Source Current (A) 60 50 ID , Drain Current (A) 80 QG Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) 40 30 20 10 OPERATION IN THIS AREA LIMITED BY R DS (on) 1µsec 100 10µsec 10 100µsec 1 Tc = 25°C Tj = 175°C Single Pulse 0.1 0 25 50 75 100 125 150 175 TC , CaseTemperature (°C) Fig 11. Maximum Drain Current vs. Case Temperature 4 40 1 10 100 1000 VDS , Drain-to-Source Voltage (V) Fig 12. Maximum Safe Operating Area www.irf.com 0.16 EAS, Single Pulse Avalanche Energy (mJ) RDS (on), Drain-to -Source On Resistance (Ω) IRFB4233PbF 1200 ID = 39A 0.12 TJ = 125°C 0.08 0.04 TJ = 25°C ID 13A 18A BOTTOM 39A TOP 1000 0.00 800 600 400 200 0 4 6 8 10 12 14 16 25 VGS, Gate-to-Source Voltage (V) Fig 13. On-Resistance Vs. Gate Voltage 75 100 125 150 175 Fig 14. Maximum Avalanche Energy Vs. Temperature 180 5.5 ton= 1µs Duty cycle = 0.25 Half Sine Wave Square Pulse 160 5.0 Repetitive Peak Current (A) VGS(th) Gate threshold Voltage (V) 50 Starting TJ, Junction Temperature (°C) 4.5 ID = 250µA 4.0 3.5 3.0 2.5 140 120 100 80 60 40 2.0 20 1.5 0 -75 -50 -25 0 25 50 75 25 100 125 150 175 50 75 100 125 150 175 Case Temperature (°C) TJ , Temperature ( °C ) Fig 16. Typical Repetitive peak Current vs. Case temperature Fig 15. Threshold Voltage vs. Temperature 1 Thermal Response ( Z thJC ) D = 0.50 0.1 0.20 0.10 0.05 0.01 0.02 0.01 0.001 τJ R1 R1 τJ τ1 R2 R2 τ2 τ1 τ2 Ci= τi/Ri Ci τi/Ri SINGLE PULSE ( THERMAL RESPONSE ) R3 R3 τ3 τC τ τ3 Ri (°C/W) τi (sec) 0.05443 0.000069 0.12807 0.001767 0.21933 0.02082 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFB4233PbF D.U.T Driver Gate Drive - - - D.U.T. ISD Waveform Reverse Recovery Current RG P.W. Period * + di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + • • • • Period P.W. + VDD + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG + V - DD IAS VGS 20V tp A 0.01Ω I AS Fig 19a. Unclamped Inductive Test Circuit Fig 19b. Unclamped Inductive Waveforms Id Vds Vgs L DUT 0 VCC Vgs(th) 1K Qgs1 Qgs2 Fig 20a. Gate Charge Test Circuit 6 Qgd Qgodr Fig 20b. Gate Charge Waveform www.irf.com IRFB4233PbF Fig 21a. tst and EPULSE Test Circuit Fig 21b. tst Test Waveforms Fig 21c. EPULSE Test Waveforms www.irf.com 7 IRFB4233PbF TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) TO-220AB Part Marking Information E XAMPL E : T HIS IS AN IR F 1010 L OT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T HE AS S E MB L Y L INE "C" Note: "P" in assembly line position indicates "Lead-Free" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE P AR T NU MB E R DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C TO-220AB packages are not recommended for Surface Mount Application. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.34mH, RG = 25Ω, IAS = 39A. Pulse width ≤ 400µs; duty cycle ≤ 2%. Rθ is measured at TJ of approximately 90°C. Half sine wave with duty cycle = 0.25, ton=1µsec. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 06/05 8 www.irf.com