IRF IRFB4233PBF

PD - 97004
IRFB4233PbF
PDP SWITCH
Features
l Advanced process technology
l Key parameters optimized for PDP Sustain,
Energy Recovery and Pass Switch Applications
l Low EPULSE rating to reduce power dissipation
in PDP Sustain, Energy Recovery and Pass
Switch Applications
l Low QG for fast response
l High repetitive peak current capability for
reliable operation
l Short fall & rise times for fast switching
l175°C operating junction temperature for
improved ruggedness
l Repetitive avalanche capability for robustness
and reliability
Key Parameters
VDS min
230
V
VDS (Avalanche) typ.
276
RDS(ON) typ. @ 10V
31
V
m:
IRP max @ TC= 100°C
114
A
TJ max
175
°C
D
G
S
TO-220AB
Description
This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch
applications in Plasma Display Panels. This MOSFET utilizes the latest processing techniques to achieve
low on-resistance per silicon area and low EPULSE rating. Additional features of this MOSFET are 175°C
operating junction temperature and high repetitive peak current capability. These features combine to
make this MOSFET a highly efficient, robust and reliable device for PDP driving applications.
Absolute Maximum Ratings
Max.
Units
Gate-to-Source Voltage
±30
V
Continuous Drain Current, VGS @ 10V
56
A
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V
39
Parameter
VGS
ID @ TC = 25°C
IDM
Pulsed Drain Current c
220
IRP @ TC = 100°C
Repetitive Peak Current g
114
PD @TC = 25°C
Power Dissipation
370
PD @TC = 100°C
Power Dissipation
190
Linear Derating Factor
2.5
W/°C
TJ
Operating Junction and
-40 to + 175
°C
TSTG
Storage Temperature Range
300
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
W
10lbxin (1.1Nxm)
N
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Junction-to-Case f
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient f
Typ.
Max.
Units
–––
0.50
–––
0.402
–––
62
°C/W
Notes  through † are on page 8
www.irf.com
1
6/8/05
IRFB4233PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Typ. Max. Units
Conditions
VGS = 0V, ID = 250µA
BVDSS
Drain-to-Source Breakdown Voltage
230
–––
–––
∆ΒVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
200
–––
RDS(on)
Static Drain-to-Source On-Resistance
–––
31
37
mΩ
VGS = 10V, ID = 28A e
VGS(th)
Gate Threshold Voltage
3.0
–––
5.0
V
VDS = VGS, ID = 250µA
∆VGS(th)/∆TJ
Gate Threshold Voltage Coefficient
–––
-14
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
–––
–––
5.0
µA
–––
–––
150
–––
–––
100
IGSS
Gate-to-Source Forward Leakage
V
mV/°C Reference to 25°C, ID = 1mA
VDS = 184V, VGS = 0V
VDS = 184V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
Gate-to-Source Reverse Leakage
–––
–––
-100
gfs
Forward Transconductance
83
–––
–––
S
Qg
Total Gate Charge
–––
120
170
nC
VDD = 115V, ID = 39A, VGS = 10Ve
Qgd
Gate-to-Drain Charge
–––
44
–––
tst
Shoot Through Blocking Time
100
–––
–––
ns
VDD = 184V, VGS = 15V, RG= 4.7Ω
–––
460
–––
–––
970
–––
EPULSE
Energy per Pulse
Ciss
Input Capacitance
–––
5510
–––
Coss
Output Capacitance
–––
480
–––
VDS = 25V, ID = 39A
L = 220nH, C= 0.4µF, VGS = 15V
µJ
VDS = 184V, RG= 4.7Ω, TJ = 25°C
L = 220nH, C= 0.4µF, VGS = 15V
VDS = 184V, RG= 4.7Ω, TJ = 100°C
VGS = 0V
pF
VDS = 25V
Crss
Reverse Transfer Capacitance
–––
220
–––
ƒ = 1.0MHz,
Coss eff.
Effective Output Capacitance
–––
340
–––
VGS = 0V, VDS = 0V to 184V
LD
Internal Drain Inductance
–––
4.5
–––
Between lead,
nH
LS
Internal Source Inductance
–––
7.5
–––
D
6mm (0.25in.)
G
from package
S
and center of die contact
Avalanche Characteristics
Parameter
Typ.
Max.
Units
250
mJ
EAS
Single Pulse Avalanche Energyd
–––
EAR
Repetitive Avalanche Energy c
–––
39
mJ
VDS(Avalanche)
Repetitive Avalanche Voltagec
276
–––
V
IAS
Avalanche Currentd
–––
39
A
Diode Characteristics
Parameter
IS @ TC = 25°C Continuous Source Current
Min.
Typ. Max. Units
–––
–––
56
–––
–––
220
(Body Diode)
ISM
Pulsed Source Current
Conditions
MOSFET symbol
A
showing the
integral reverse
p-n junction diode.
(Body Diode)c
VSD
Diode Forward Voltage
–––
–––
1.0
V
TJ = 25°C, IS = 39A, VGS = 0V e
trr
Reverse Recovery Time
–––
190
280
ns
TJ = 25°C, IF = 39A, VDD = 50V
Qrr
Reverse Recovery Charge
–––
760
1140
nC
di/dt = 100A/µs e
2
www.irf.com
IRFB4233PbF
1000
1000
100
10
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.5V
6.0V
5.5V
5.3V
1
0.1
5.3V
100
BOTTOM
10
5.3V
≤ 60µs PULSE WIDTH
Tj = 25°C
0.01
0.1
1
10
≤ 60µs PULSE WIDTH
Tj = 175°C
1
100
0.1
VDS , Drain-to-Source Voltage (V)
10
100
Fig 2. Typical Output Characteristics
1000.00
4.0
RDS(on) , Drain-to-Source On Resistance
ID, Drain-to-Source Current(Α)
1
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
100.00
TJ = 175°C
1.00
TJ = 25°C
0.10
VDS = 25V
≤ 60µs PULSE WIDTH
3.0
4.0
5.0
6.0
7.0
ID = 39A
VGS = 10V
3.0
(Normalized)
10.00
0.01
8.0
2.0
1.0
0.0
9.0
-60 -40 -20
VGS, Gate-to-Source Voltage (V)
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
900
1000
L = 220nH
C = 0.4µF
100°C
25°C
800
700
L = 220nH
C = Variable
100°C
25°C
800
Energy per pulse (µJ)
Energy per pulse (µJ)
VGS
15V
10V
8.0V
7.0V
6.5V
6.0V
5.5V
5.3V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
600
500
400
600
400
200
300
200
0
130
140
150
160
170
180
190
VDS, Drain-to -Source Voltage (V)
Fig 5. Typical EPULSE vs. Drain-to-Source Voltage
www.irf.com
120
130
140
150
160
170
180
ID, Peak Drain Current (A)
Fig 6. Typical EPULSE vs. Drain Current
3
IRFB4233PbF
1200
1000.0
Energy per pulse (µJ)
1000
ISD , Reverse Drain Current (A)
L = 220nH
C= 0.4µF
C= 0.3µF
C= 0.2µF
800
600
400
200
100.0
TJ = 175°C
10.0
1.0
TJ = 25°C
VGS = 0V
0
0.1
25
50
75
100
125
150
0.2
Temperature (°C)
Fig 7. Typical EPULSE vs.Temperature
10000
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
20
Coss = Cds + Cgd
6000
0.6
0.8
1.0
1.2
Fig 8. Typical Source-Drain Diode Forward Voltage
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
8000
0.4
VSD, Source-to-Drain Voltage (V)
Ciss
4000
2000
ID= 39A
VDS = 184V
16
VDS= 115V
VDS= 46V
12
8
4
Coss
Crss
0
1
0
10
100
0
1000
Fig 9. Typical Capacitance vs.Drain-to-Source Voltage
120
160
200
Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage
1000
ID, Drain-to-Source Current (A)
60
50
ID , Drain Current (A)
80
QG Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
40
30
20
10
OPERATION IN THIS AREA
LIMITED BY R DS (on)
1µsec
100
10µsec
10
100µsec
1
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
0
25
50
75
100
125
150
175
TC , CaseTemperature (°C)
Fig 11. Maximum Drain Current vs. Case Temperature
4
40
1
10
100
1000
VDS , Drain-to-Source Voltage (V)
Fig 12. Maximum Safe Operating Area
www.irf.com
0.16
EAS, Single Pulse Avalanche Energy (mJ)
RDS (on), Drain-to -Source On Resistance (Ω)
IRFB4233PbF
1200
ID = 39A
0.12
TJ = 125°C
0.08
0.04
TJ = 25°C
ID
13A
18A
BOTTOM 39A
TOP
1000
0.00
800
600
400
200
0
4
6
8
10
12
14
16
25
VGS, Gate-to-Source Voltage (V)
Fig 13. On-Resistance Vs. Gate Voltage
75
100
125
150
175
Fig 14. Maximum Avalanche Energy Vs. Temperature
180
5.5
ton= 1µs
Duty cycle = 0.25
Half Sine Wave
Square Pulse
160
5.0
Repetitive Peak Current (A)
VGS(th) Gate threshold Voltage (V)
50
Starting TJ, Junction Temperature (°C)
4.5
ID = 250µA
4.0
3.5
3.0
2.5
140
120
100
80
60
40
2.0
20
1.5
0
-75
-50 -25
0
25
50
75
25
100 125 150 175
50
75
100
125
150
175
Case Temperature (°C)
TJ , Temperature ( °C )
Fig 16. Typical Repetitive peak Current vs.
Case temperature
Fig 15. Threshold Voltage vs. Temperature
1
Thermal Response ( Z thJC )
D = 0.50
0.1
0.20
0.10
0.05
0.01
0.02
0.01
0.001
τJ
R1
R1
τJ
τ1
R2
R2
τ2
τ1
τ2
Ci= τi/Ri
Ci τi/Ri
SINGLE PULSE
( THERMAL RESPONSE )
R3
R3
τ3
τC
τ
τ3
Ri (°C/W) τi (sec)
0.05443 0.000069
0.12807 0.001767
0.21933 0.02082
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFB4233PbF
D.U.T
Driver Gate Drive
ƒ
-
‚
-
-
„
D.U.T. ISD Waveform
Reverse
Recovery
Current

RG
P.W.
Period
*
+
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
•
•
•
•
Period
P.W.
+
VDD
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
+
V
- DD
IAS
VGS
20V
tp
A
0.01Ω
I AS
Fig 19a. Unclamped Inductive Test Circuit
Fig 19b. Unclamped Inductive Waveforms
Id
Vds
Vgs
L
DUT
0
VCC
Vgs(th)
1K
Qgs1 Qgs2
Fig 20a. Gate Charge Test Circuit
6
Qgd
Qgodr
Fig 20b. Gate Charge Waveform
www.irf.com
IRFB4233PbF
Fig 21a. tst and EPULSE Test Circuit
Fig 21b. tst Test Waveforms
Fig 21c. EPULSE Test Waveforms
www.irf.com
7
IRFB4233PbF
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
E XAMPL E : T HIS IS AN IR F 1010
L OT CODE 1789
AS S E MB L E D ON WW 19, 1997
IN T HE AS S E MB L Y L INE "C"
Note: "P" in assembly line
position indicates "Lead-Free"
INT E R NAT IONAL
R E CT IF IE R
L OGO
AS S E MB L Y
L OT CODE
P AR T NU MB E R
DAT E CODE
YE AR 7 = 1997
WE E K 19
L INE C
TO-220AB packages are not recommended for Surface Mount Application.
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 0.34mH, RG = 25Ω, IAS = 39A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ Rθ is measured at TJ of approximately 90°C.
… Half sine wave with duty cycle = 0.25, ton=1µsec.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 06/05
8
www.irf.com