INFINEON BFP640

BFP640
NPN Silicon Germanium RF Transistor
• High gain low noise RF transistor
3
• Provides outstanding performance
2
4
for a wide range of wireless applications
1
• Ideal for CDMA and WLAN applications
• Outstanding noise figure F = 0.65 dB at 1.8 GHz
Outstanding noise figure F = 1.2 dB at 6 GHz
• High maximum stable gain
Gms = 24 dB at 1.8 GHz
• Gold metallization for extra high reliability
• 70 GHz fT -Silicon Germanium technology
• Pb-free (RoHS compliant) package 1)
• Qualified according AEC Q101
ESD (Electrostatic discharge) sensitive device, observe handling precaution!
Type
BFP640
1Pb-containing
Marking
R4s
1=B
Pin Configuration
2=E
3=C
4=E
-
Package
-
SOT343
package may be available upon special request
2007-05-29
1
BFP640
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
VCEO
Value
Unit
V
TA > 0 °C
4
TA ≤ 0 °C
3.7
Collector-emitter voltage
VCES
13
Collector-base voltage
VCBO
13
Emitter-base voltage
VEBO
1.2
Collector current
IC
50
Base current
IB
3
Total power dissipation1)
Ptot
200
mW
Junction temperature
Tj
150
°C
Ambient temperature
TA
-65 ... 150
Storage temperature
T stg
-65 ... 150
mA
TS ≤ 90°C
Thermal Resistance
Parameter
Symbol
Value
Unit
Junction - soldering point 2)
RthJS
≤ 300
K/W
Electrical Characteristics at TA = 25°C, unless otherwise specified
Symbol
Values
Parameter
Unit
min.
typ.
max.
V(BR)CEO
4
4.5
-
V
ICES
-
-
30
µA
ICBO
-
-
100
nA
IEBO
-
-
3
µA
hFE
110
180
270
DC Characteristics
Collector-emitter breakdown voltage
IC = 1 mA, I B = 0
Collector-emitter cutoff current
VCE = 13 V, VBE = 0
Collector-base cutoff current
VCB = 5 V, IE = 0
Emitter-base cutoff current
VEB = 0.5 V, IC = 0
DC current gain
-
IC = 30 mA, VCE = 3 V, pulse measured
1T
S is measured on the collector lead at the soldering point to the pcb
2For calculation of R
thJA please refer to Application Note Thermal Resistance
2007-05-29
2
BFP640
Electrical Characteristics at TA = 25°C, unless otherwise specified
Symbol
Values
Unit
Parameter
min.
typ. max.
AC Characteristics (verified by random sampling)
Transition frequency
fT
30
40
-
Ccb
-
0.09
0.2
Cce
-
0.23
-
Ceb
-
0.5
-
GHz
IC = 30 mA, VCE = 3 V, f = 1 GHz
Collector-base capacitance
pF
VCB = 3 V, f = 1 MHz, V BE = 0 ,
emitter grounded
Collector emitter capacitance
VCE = 3 V, f = 1 MHz, V BE = 0 ,
base grounded
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz, VCB = 0 ,
collector grounded
Noise figure
dB
F
IC = 5 mA, VCE = 3 V, f = 1.8 GHz, ZS = ZSopt
-
0.65
-
IC = 5 mA, VCE = 3 V, f = 6 GHz, ZS = ZSopt
-
1.2
-
G ms
-
24
-
dB
G ma
-
12.5
-
dB
Power gain, maximum stable1)
IC = 30 mA, VCE = 3 V, ZS = ZSopt,
ZL = ZLopt , f = 1.8 GHz
Power gain, maximum available1)
IC = 30 mA, VCE = 3 V, ZS = ZSopt,
ZL = ZLopt, f = 6 GHz
|S21e|2
Transducer gain
dB
IC = 30 mA, VCE = 3 V, ZS = ZL = 50 Ω,
f = 1.8 GHz
-
21
-
f = 6 GHz
-
10.5
-
IP 3
-
26.5
-
P-1dB
-
13
-
Third order intercept point at output2)
dBm
VCE = 3 V, I C = 30 mA, ZS =ZL=50 Ω, f = 1.8 GHz
1dB Compression point at output
IC = 30 mA, VCE = 3 V, ZS =ZL=50 Ω, f = 1.8 GHz
1/2
ma = |S 21e / S12e| (k-(k²-1) ), Gms = |S21e / S12e |
2IP3 value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz
1G
2007-05-29
3
BFP640
SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):
Transistor Chip Data:
IS =
VAF =
NE =
VAR =
NC =
RBM =
CJE =
TF =
ITF =
VJC =
TR =
MJS =
XTI =
AF =
TITF1
0.22
1000
2
2
1.8
2.707
227.6
1.8
0.4
0.6
0.2
0.27
3
fA
V
V
-
2
-0.0065
-
BF =
IKF =
BR =
IKR =
RB =
RE =
VJE =
XTF =
PTF =
MJC =
CJS =
XTB =
FC =
KF =
TITF2
Ω
fF
ps
A
V
ns
-
450
0.15
55
3.8
3.129
0.6
0.8
10
0
0.5
93.4
-1.42
0.8
7.291E-11
1.0E-5
A
mA
Ω
V
deg
fF
-
NF =
ISE =
NR =
ISC =
IRB =
RC =
MJE =
VTF =
CJC =
XCJC =
VJS =
EG =
TNOM
1.025
21
1
400
1.522
3.061
0.3
1.5
67.43
1
0.6
1.078
298
fA
fA
mA
Ω
V
fF
V
eV
K
All parameters are ready to use, no scalling is necessary.
Package Equivalent Circuit:
CBS
RBS
CBCC
LCC
C
BFP640_Chip
S
B
B
LBB
LBC
RCS
CBEC
E
LCB
CCS
RES
CES
LEC
CBE
I
CCEI
LEB
CBEO
CCEO
T = 25°C
Itf = 400* ( 1 - 6.5e-3 * (T-25) + 1.0e-5 * (T-25)^2 )
E
For examples and ready to use parameters
please contact your local Infineon Technologies
distributor or sales office to obtain a Infineon
Technologies CD-ROM or see Internet:
http://www.infineon.com
C
LBC =
LCC =
LEC =
LBB =
LCB =
LEB =
CBEC =
CBCC =
CES =
CBS =
CCS =
CCEO =
CBEO =
CCEI =
CBEI =
RBS =
RCS =
RES =
120
120
20
696.2
682.4
230.6
98.4
55.9
180
79
75
131.2
102.5
112.6
180.4
1200
1200
300
pH
pH
pH
pH
pH
pH
fF
fF
fF
fF
fF
fF
fF
fF
fF
Ω
Ω
Ω
Valid up to 6GHz
2007-05-29
4
BFP640
Total power dissipation Ptot = ƒ(TS)
Permissible Pulse Load RthJS = ƒ(t p)
10 3
220
mW
180
K/W
RthJS
Ptot
160
140
120
10 2
100
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D=0
80
60
40
20
0
0
15
30
45
60
75
90 105 120 °C
10 1 -7
10
150
10
-6
10
-5
10
-4
10
-3
10
-2
s
TS
10
tp
Permissible Pulse Load
Collector-base capacitance Ccb= ƒ(VCB)
Ptotmax/P totDC = ƒ(tp)
f = 1MHz
10 1
Ptotmax /PtotDC
0.25
CCB
pF
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
-
0.15
0.1
0.05
10 0 -7
10
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
0
0
0
tp
2
4
6
8
10
V
14
VCB
2007-05-29
5
0
BFP640
Third order Intercept Point IP3=ƒ(IC)
Transition frequency fT= ƒ(IC)
(Output, ZS=ZL=50Ω)
f = 1GHz
VCE = parameter, f = 1.8 GHz
VCE = parameter
30
45
dBm
GHz
24
4V
21
30
fT
IP3
3V
35
18
25
3V
15
2V
20
2V
12
15
9
10
6
1V
5
3
0.5V
0
0
10
20
30
40
mA
0
0
60
10
20
30
40
mA
IC
60
IC
Power gain Gma, Gms = ƒ(IC)
Power Gain Gma, Gms = ƒ(f),
VCE = 3V
|S21|² = f (f)
f = parameter
VCE = 3V, IC = 30mA
30
55
dB
0.9GHz
dB
26
45
24
G
G
40
1.8GHz
22
35
20
2.4GHz
Gms
30
18
3GHz
25
16
4GHz
20
14
|S21|²
Gma
5GHz
12
10
0
15
6GHz
10
20
30
40
mA
10
0
60
IC
1
2
3
4
GHz
6
f
2007-05-29
6
BFP640
Power gain Gma, Gms = ƒ (VCE)
Noise figure F = ƒ(I C)
IC = 30mA
VCE = 3V, ZS = ZSopt
f = parameter
30
2.4
0.9GHz
2.2
dB
2
1.8GHz
1.8
2.4GHz
20
1.6
G
3GHz
1.4
F [dB]
4GHz
15
5GHz
6GHz
1.2
1
10
f = 6GHz
0.8
f = 5GHz
f = 4GHz
0.6
f = 3GHz
5
0.4
f = 2.4GHz
f = 1.8GHz
0.2
0
0
0.5
1
1.5
2
2.5
3
3.5
4
V
5
0
0
VCE
10
20
30
40
50
I [mA]
c
Noise figure F = ƒ(f)
VCE = 3V, ZS = Z Sopt
2
2
1.8
1.8
1.6
1.6
1.4
1.4
1.2
1.2
F [dB]
F [dB]
Noise figure F = ƒ(IC )
VCE = 3V, f = 1.8 GHz
f = 0.9GHz
1
1
Z = 50Ω
S
0.8
0.8
IC = 30mA
Z =Z
S
Sopt
0.6
0.6
0.4
0.4
0.2
0.2
0
IC = 5.0mA
0
0
10
20
30
40
50
0
I [mA]
1
2
3
4
5
6
7
f [GHz]
c
2007-05-29
7
BFP640
Source impedance for min.
noise figure vs. frequency
VCE = 3 V, I C = 5 mA/ 30 mA
1
1.5
2
0.5
0.4
3
0.3
4
I = 5.0mA
0.2
2.4GHz
0.1
1.8GHz
3GHz
0.1
0
5
c
0.2 0.3 0.4 0.5 4GHz
10
0.9GHz
1
1.5
2
3
4 5
5GHz
−0.1
−10
6GHz
−0.2
−5
−4
−0.3
−0.4
−3
I = 30mA
c
−0.5
−2
−1.5
−1
2007-05-29
8
Package SOT343
BFP640
Package Outline
0.9 ±0.1
2 ±0.2
0.1 MAX.
1.3
0.1
A
1
2
0.1 MIN.
0.15
1.25 ±0.1
3
2.1 ±0.1
4
0.3 +0.1
-0.05
+0.1
0.15 -0.05
+0.1
0.6 -0.05
4x
0.1
0.2
M
M
A
Foot Print
1.6
0.8
0.6
1.15
0.9
Marking Layout (Example)
Manufacturer
2005, June
Date code (YM)
BGA420
Type code
Pin 1
Standard Packing
Reel ø180 mm = 3.000 Pieces/Reel
Reel ø330 mm = 10.000 Pieces/Reel
0.2
2.3
8
4
Pin 1
2.15
1.1
2007-05-29
9
BFP640
Edition 2006-02-01
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2007.
All Rights Reserved.
Attention please!
The information given in this dokument shall in no event be regarded as a guarantee
of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any
examples or hints given herein, any typical values stated herein and/or any information
regarding the application of the device, Infineon Technologies hereby disclaims any
and all warranties and liabilities of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices
please contact your nearest Infineon Technologies Office ( www.infineon.com ).
Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest
Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or
systems with the express written approval of Infineon Technologies, if a failure of
such components can reasonably be expected to cause the failure of that
life-support device or system, or to affect the safety or effectiveness of that
device or system.
Life support devices or systems are intended to be implanted in the human body,
or to support and/or maintain and sustain and/or protect human life. If they fail,
it is reasonable to assume that the health of the user or other persons
may be endangered.
2007-05-29
10