BFP640 NPN Silicon Germanium RF Transistor • High gain low noise RF transistor 3 • Provides outstanding performance 2 4 for a wide range of wireless applications 1 • Ideal for CDMA and WLAN applications • Outstanding noise figure F = 0.65 dB at 1.8 GHz Outstanding noise figure F = 1.2 dB at 6 GHz • High maximum stable gain Gms = 24 dB at 1.8 GHz • Gold metallization for extra high reliability • 70 GHz fT -Silicon Germanium technology • Pb-free (RoHS compliant) package 1) • Qualified according AEC Q101 ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type BFP640 1Pb-containing Marking R4s 1=B Pin Configuration 2=E 3=C 4=E - Package - SOT343 package may be available upon special request 2007-05-29 1 BFP640 Maximum Ratings Parameter Symbol Collector-emitter voltage VCEO Value Unit V TA > 0 °C 4 TA ≤ 0 °C 3.7 Collector-emitter voltage VCES 13 Collector-base voltage VCBO 13 Emitter-base voltage VEBO 1.2 Collector current IC 50 Base current IB 3 Total power dissipation1) Ptot 200 mW Junction temperature Tj 150 °C Ambient temperature TA -65 ... 150 Storage temperature T stg -65 ... 150 mA TS ≤ 90°C Thermal Resistance Parameter Symbol Value Unit Junction - soldering point 2) RthJS ≤ 300 K/W Electrical Characteristics at TA = 25°C, unless otherwise specified Symbol Values Parameter Unit min. typ. max. V(BR)CEO 4 4.5 - V ICES - - 30 µA ICBO - - 100 nA IEBO - - 3 µA hFE 110 180 270 DC Characteristics Collector-emitter breakdown voltage IC = 1 mA, I B = 0 Collector-emitter cutoff current VCE = 13 V, VBE = 0 Collector-base cutoff current VCB = 5 V, IE = 0 Emitter-base cutoff current VEB = 0.5 V, IC = 0 DC current gain - IC = 30 mA, VCE = 3 V, pulse measured 1T S is measured on the collector lead at the soldering point to the pcb 2For calculation of R thJA please refer to Application Note Thermal Resistance 2007-05-29 2 BFP640 Electrical Characteristics at TA = 25°C, unless otherwise specified Symbol Values Unit Parameter min. typ. max. AC Characteristics (verified by random sampling) Transition frequency fT 30 40 - Ccb - 0.09 0.2 Cce - 0.23 - Ceb - 0.5 - GHz IC = 30 mA, VCE = 3 V, f = 1 GHz Collector-base capacitance pF VCB = 3 V, f = 1 MHz, V BE = 0 , emitter grounded Collector emitter capacitance VCE = 3 V, f = 1 MHz, V BE = 0 , base grounded Emitter-base capacitance VEB = 0.5 V, f = 1 MHz, VCB = 0 , collector grounded Noise figure dB F IC = 5 mA, VCE = 3 V, f = 1.8 GHz, ZS = ZSopt - 0.65 - IC = 5 mA, VCE = 3 V, f = 6 GHz, ZS = ZSopt - 1.2 - G ms - 24 - dB G ma - 12.5 - dB Power gain, maximum stable1) IC = 30 mA, VCE = 3 V, ZS = ZSopt, ZL = ZLopt , f = 1.8 GHz Power gain, maximum available1) IC = 30 mA, VCE = 3 V, ZS = ZSopt, ZL = ZLopt, f = 6 GHz |S21e|2 Transducer gain dB IC = 30 mA, VCE = 3 V, ZS = ZL = 50 Ω, f = 1.8 GHz - 21 - f = 6 GHz - 10.5 - IP 3 - 26.5 - P-1dB - 13 - Third order intercept point at output2) dBm VCE = 3 V, I C = 30 mA, ZS =ZL=50 Ω, f = 1.8 GHz 1dB Compression point at output IC = 30 mA, VCE = 3 V, ZS =ZL=50 Ω, f = 1.8 GHz 1/2 ma = |S 21e / S12e| (k-(k²-1) ), Gms = |S21e / S12e | 2IP3 value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz 1G 2007-05-29 3 BFP640 SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax): Transistor Chip Data: IS = VAF = NE = VAR = NC = RBM = CJE = TF = ITF = VJC = TR = MJS = XTI = AF = TITF1 0.22 1000 2 2 1.8 2.707 227.6 1.8 0.4 0.6 0.2 0.27 3 fA V V - 2 -0.0065 - BF = IKF = BR = IKR = RB = RE = VJE = XTF = PTF = MJC = CJS = XTB = FC = KF = TITF2 Ω fF ps A V ns - 450 0.15 55 3.8 3.129 0.6 0.8 10 0 0.5 93.4 -1.42 0.8 7.291E-11 1.0E-5 A mA Ω V deg fF - NF = ISE = NR = ISC = IRB = RC = MJE = VTF = CJC = XCJC = VJS = EG = TNOM 1.025 21 1 400 1.522 3.061 0.3 1.5 67.43 1 0.6 1.078 298 fA fA mA Ω V fF V eV K All parameters are ready to use, no scalling is necessary. Package Equivalent Circuit: CBS RBS CBCC LCC C BFP640_Chip S B B LBB LBC RCS CBEC E LCB CCS RES CES LEC CBE I CCEI LEB CBEO CCEO T = 25°C Itf = 400* ( 1 - 6.5e-3 * (T-25) + 1.0e-5 * (T-25)^2 ) E For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a Infineon Technologies CD-ROM or see Internet: http://www.infineon.com C LBC = LCC = LEC = LBB = LCB = LEB = CBEC = CBCC = CES = CBS = CCS = CCEO = CBEO = CCEI = CBEI = RBS = RCS = RES = 120 120 20 696.2 682.4 230.6 98.4 55.9 180 79 75 131.2 102.5 112.6 180.4 1200 1200 300 pH pH pH pH pH pH fF fF fF fF fF fF fF fF fF Ω Ω Ω Valid up to 6GHz 2007-05-29 4 BFP640 Total power dissipation Ptot = ƒ(TS) Permissible Pulse Load RthJS = ƒ(t p) 10 3 220 mW 180 K/W RthJS Ptot 160 140 120 10 2 100 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 80 60 40 20 0 0 15 30 45 60 75 90 105 120 °C 10 1 -7 10 150 10 -6 10 -5 10 -4 10 -3 10 -2 s TS 10 tp Permissible Pulse Load Collector-base capacitance Ccb= ƒ(VCB) Ptotmax/P totDC = ƒ(tp) f = 1MHz 10 1 Ptotmax /PtotDC 0.25 CCB pF D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 - 0.15 0.1 0.05 10 0 -7 10 10 -6 10 -5 10 -4 10 -3 10 -2 s 10 0 0 0 tp 2 4 6 8 10 V 14 VCB 2007-05-29 5 0 BFP640 Third order Intercept Point IP3=ƒ(IC) Transition frequency fT= ƒ(IC) (Output, ZS=ZL=50Ω) f = 1GHz VCE = parameter, f = 1.8 GHz VCE = parameter 30 45 dBm GHz 24 4V 21 30 fT IP3 3V 35 18 25 3V 15 2V 20 2V 12 15 9 10 6 1V 5 3 0.5V 0 0 10 20 30 40 mA 0 0 60 10 20 30 40 mA IC 60 IC Power gain Gma, Gms = ƒ(IC) Power Gain Gma, Gms = ƒ(f), VCE = 3V |S21|² = f (f) f = parameter VCE = 3V, IC = 30mA 30 55 dB 0.9GHz dB 26 45 24 G G 40 1.8GHz 22 35 20 2.4GHz Gms 30 18 3GHz 25 16 4GHz 20 14 |S21|² Gma 5GHz 12 10 0 15 6GHz 10 20 30 40 mA 10 0 60 IC 1 2 3 4 GHz 6 f 2007-05-29 6 BFP640 Power gain Gma, Gms = ƒ (VCE) Noise figure F = ƒ(I C) IC = 30mA VCE = 3V, ZS = ZSopt f = parameter 30 2.4 0.9GHz 2.2 dB 2 1.8GHz 1.8 2.4GHz 20 1.6 G 3GHz 1.4 F [dB] 4GHz 15 5GHz 6GHz 1.2 1 10 f = 6GHz 0.8 f = 5GHz f = 4GHz 0.6 f = 3GHz 5 0.4 f = 2.4GHz f = 1.8GHz 0.2 0 0 0.5 1 1.5 2 2.5 3 3.5 4 V 5 0 0 VCE 10 20 30 40 50 I [mA] c Noise figure F = ƒ(f) VCE = 3V, ZS = Z Sopt 2 2 1.8 1.8 1.6 1.6 1.4 1.4 1.2 1.2 F [dB] F [dB] Noise figure F = ƒ(IC ) VCE = 3V, f = 1.8 GHz f = 0.9GHz 1 1 Z = 50Ω S 0.8 0.8 IC = 30mA Z =Z S Sopt 0.6 0.6 0.4 0.4 0.2 0.2 0 IC = 5.0mA 0 0 10 20 30 40 50 0 I [mA] 1 2 3 4 5 6 7 f [GHz] c 2007-05-29 7 BFP640 Source impedance for min. noise figure vs. frequency VCE = 3 V, I C = 5 mA/ 30 mA 1 1.5 2 0.5 0.4 3 0.3 4 I = 5.0mA 0.2 2.4GHz 0.1 1.8GHz 3GHz 0.1 0 5 c 0.2 0.3 0.4 0.5 4GHz 10 0.9GHz 1 1.5 2 3 4 5 5GHz −0.1 −10 6GHz −0.2 −5 −4 −0.3 −0.4 −3 I = 30mA c −0.5 −2 −1.5 −1 2007-05-29 8 Package SOT343 BFP640 Package Outline 0.9 ±0.1 2 ±0.2 0.1 MAX. 1.3 0.1 A 1 2 0.1 MIN. 0.15 1.25 ±0.1 3 2.1 ±0.1 4 0.3 +0.1 -0.05 +0.1 0.15 -0.05 +0.1 0.6 -0.05 4x 0.1 0.2 M M A Foot Print 1.6 0.8 0.6 1.15 0.9 Marking Layout (Example) Manufacturer 2005, June Date code (YM) BGA420 Type code Pin 1 Standard Packing Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel 0.2 2.3 8 4 Pin 1 2.15 1.1 2007-05-29 9 BFP640 Edition 2006-02-01 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2007. All Rights Reserved. Attention please! The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office ( www.infineon.com ). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 2007-05-29 10