PD-5.043A CPV363M4K Short Circuit Rated UltraFast IGBT IGBT SIP MODULE Features 1 • Short Circuit Rated UltraFast: Optimized for high operating frequencies >5.0 kHz , and Short Circuit Rated to 10µs @ 125°C, VGE = 15V • Fully isolated printed circuit board mount package • Switching-loss rating includes all "tail" losses • HEXFREDTM soft ultrafast diodes • Optimized for high operating frequency (over 5kHz) See Fig. 1 for Current vs. Frequency curve 3 D1 Q1 9 D3 Q3 4 6 D2 Q2 12 D5 Q5 15 10 D4 Q4 7 18 16 D6 Q6 13 19 Product Summary Output Current in a Typical 20 kHz Motor Drive 6.7 ARMS per phase (1.94 kW total) with TC = 90°C, TJ = 125°C, Supply Voltage 360Vdc, Power Factor 0.8, Modulation Depth 115% (See Figure 1) Description The IGBT technology is the key to International Rectifier's advanced line of IMS (Insulated Metal Substrate) Power Modules. These modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power MOSFET. This superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. This package is highly suited to motor drive applications and where space is at a premium. IMS-2 Absolute Maximum Ratings Parameter VCES I C @ TC = 25°C I C @ TC = 100°C ICM ILM I F @ TC = 100°C IFM t sc VGE VISOL PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current, each IGBT Continuous Collector Current, each IGBT Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Short Circuit Withstand Time Gate-to-Emitter Voltage Isolation Voltage, any terminal to case, 1 minute Maximum Power Dissipation, each IGBT Maximum Power Dissipation, each IGBT Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw. Max. Units 600 11 6.0 22 22 6.1 22 10 ± 20 2500 36 14 -40 to +150 V A µs V VRMS W °C 300 (0.063 in. (1.6mm) from case) 5-7 lbf•in (0.55 - 0.8 N•m) Thermal Resistance Parameter RθJC (IGBT) RθJC(DIODE) RθCS (MODULE) Wt Junction-to-Case, each IGBT, one IGBT in conduction Junction-to-Case, each diode, one diode in conduction Case-to-Sink, flat, greased surface Weight of module Typ. Max. ––– ––– 0.1 20 (0.7) 3.5 5.5 ––– ––– Units °C/W g (oz) 2/24/98 CPV363M4K Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions Collector-to-Emitter Breakdown Voltage 600 ––– ––– V VGE = 0V, IC = 250µA ∆V(BR)CES/∆T J Temp. Coeff. of Breakdown Voltage ––– 0.45 ––– V/°C VGE = 0V, IC = 1.0mA Collector-to-Emitter Saturation Voltage ––– 1.72 2.10 IC = 6.0A VGE = 15V VCE(on) See Fig. 2, 5 ––– 2.00 ––– V IC = 11A ––– 1.60 ––– IC = 6.0A, TJ = 150°C Gate Threshold Voltage 3.0 ––– 6.0 VCE = VGE, IC = 250µA VGE(th) ––– -13 ––– mV/°C VCE = VGE, IC = 250µA ∆VGE(th) /∆TJ Temp. Coeff. of Threshold Voltage Forward Transconductance 3.0 6.0 ––– S VCE = 100V, IC = 12A gfe Zero Gate Voltage Collector Current ––– ––– 250 µA VGE = 0V, VCE = 600V ICES ––– ––– 2500 VGE = 0V, VCE = 600V, TJ = 150°C Diode Forward Voltage Drop ––– 1.4 1.7 V IC = 12A See Fig. 13 V FM ––– 1.3 1.6 IC = 12A, TJ = 150°C Gate-to-Emitter Leakage Current ––– ––– ±100 nA VGE = ±20V IGES V(BR)CES Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 10 td(on) tr td(off) tf Ets Cies Coes Cres t rr Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Q rr Diode Reverse Recovery Charge ––– 54 ––– 24 ––– 161 ––– 244 ––– 0.60 ––– 740 ––– 100 ––– 9.3 ––– 42 ––– 80 ––– 3.5 ––– 5.6 ––– 80 ––– 220 ––– 180 ––– 120 Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets tsc d i(rec)M / dt Diode Peak Rate of Fall of Recovery During tb Typ. 61 7.4 27 55 24 107 92 0.28 0.10 0.39 ––– Max. Units Conditions 91 IC = 6A 11 nC VCC = 400V 40 See Fig. 8 ––– TJ = 25°C ––– ns IC = 6.0A, VCC = 480V 160 VGE = 15V, RG = 23Ω 140 Energy losses include "tail" and ––– diode reverse recovery. ––– mJ See Fig. 9, 10, 18 0.50 ––– µs VCC = 360V, TJ = 125°C VGE = 15V, RG = 23Ω, VCPK < 500V ––– TJ = 150°C, See Fig.10, 11, 18 ––– ns IC = 6.0A, VCC = 480V ––– VGE = 15V, RG = 23Ω ––– Energy losses include "tail" and ––– mJ diode reverse recovery. ––– VGE = 0V ––– pF VCC = 30V See Fig. 7 ––– ƒ = 1.0MHz 60 ns TJ = 25°C See Fig. 120 TJ = 125°C 14 IF = 12A 6.0 A TJ = 25°C See Fig. 15 VR = 200V 10 TJ = 125°C 180 nC TJ = 25°C See Fig. 600 TJ = 125°C 16 di/dt=200A/µs ––– A/µs TJ = 25°C See Fig. ––– TJ = 125°C 17 Notes: Repetitive rating; VGE=20V, pulse width limited by max. junction temperature. ( See fig. 20) VCC =80%(VCES), VGE =20V, L=10µH, RG= 23Ω, ( See fig. 19 ) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. CPV363M4K 3.50 T c = 9 0° C T j = 1 25 ° C P ow er F ac tor = 0 .8 M o d ula tio n D ep th = 1 .15 V c c = 50 % o f R a ted V o lta g e LOAD CURRENT (A) 10 2.92 8 2.33 6 1.75 4 1.17 2 0.58 0.00 100 0 0.1 1 Total Output Power (kW) 12 10 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 TJ = 25 oC TJ = 150 oC 10 1 V GE = 15V 20µs PULSE WIDTH 0.1 1 10 V CE, Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics I C, Collector-to-Emitter Current (A) I C, Collector-to-Emitter Current (A) 100 TJ = 150 oC 10 TJ = 25 oC 1 VCC = 50V 5µs PULSE WIDTH 0.1 5 10 VGE, Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 15 CPV363M4K 3.0 V GE = 1 5 V VCE , Collector-to-Emitter Voltage(V) M axim um D C C o llec tor C urr ent ( A ) 12 9 6 3 A 0 25 50 75 100 125 IC = 12A 2.0 1.0 -60 -40 -20 150 0 20 40 60 IC = 6A IC = 3A 80 100 120 140 160 T J , Junction Temperature ( °C) T C , C ase T em pera ture (° C ) Fig. 4 - Maximum Collector Current vs. Case Temperature VGE = 15V 80 us PULSE WIDTH Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature T herm al R espo nse (Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 PD M 0.02 0.01 0 .1 t SINGLE PULSE ( THE RMAL RES PO NSE) t2 Note s: 1. Du ty fac tor D = t 0.01 0.0000 1 1 1 /t 2 2. Pe ak TJ = P D M x Z th JC + T C 0.0001 0.001 0.0 1 0.1 1 t 1 , R e ct an gu la r P ulse D ura tion (s ec ) Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case 10 CPV363M4K 1500 VGE, Gate-to-Emitter Voltage (V) 1200 C, Capacitance (pF) 20 VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc Cies 900 600 Coes 300 VCC = 400V I C = 6.0A 16 12 8 4 Cres 0 1 10 0 100 0 VCE , Collector-to-Emitter Voltage (V) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 10 Total Switching Losses (mJ) Total Switching Losses (mJ) V CC = 480V V GE = 15V TJ = 25 °C 0.8 I C = 6.0A 0.6 0.4 0.2 0.0 10 20 30 40 RG RG, ,Gate GateResistance Resistance(Ohm) (Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance 40 60 80 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 1.0 0 20 Q G, Total Gate Charge (nC) 50 RG =10Ω 23Ohm Ω VGE = 15V VCC = 480V I C = 12A 1 0.1 -60 -40 -20 0 20 40 60 IC = 6A IC = 3A 80 100 120 140 160 T J, Junction Temperature ( °C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature CPV363M4K 100 10Ω I C , C ollector-to-E m itter C urrent (A ) Ω RG = 23Ohm T J = 150 °C 480V VCC = 0V 1.2 VGE = 15V 0.9 0.6 0.3 0.0 0 3 6 9 12 VG E = 2 0 V T J = 12 5 °C S AF E O P ER A TIN G AR EA 10 A 1 15 1 I C , Collector-to-emitter Current (A) 10 100 VC E , C ollector-to-E m itter V oltage (V ) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA 100 Instantaneous F orward C urrent - I F (A) Total Switching Losses (mJ) 1.5 TJ = 1 50°C TJ = 1 25°C 10 TJ = 25°C 1 0.4 0.8 1.2 1.6 2.0 2.4 F orward V oltage D rop - V FM (V) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 1000 CPV363M4K 160 100 VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C VR = 2 0 0 V TJ = 1 2 5 ° C T J = 2 5 °C 120 I IR RM - (A ) t rr - (n s) I F = 24A I F = 12 A 80 I F = 6.0 A I F = 24 A I F = 12 A 10 IF = 6 .0A 40 0 100 di f /d t - (A /µ s) 1 100 1000 1000 di f /d t - (A /µs) Fig. 15 - Typical Recovery Current vs. dif /dt Fig. 14 - Typical Reverse Recovery vs. dif/dt 10000 600 VR = 2 0 0 V TJ = 1 2 5 ° C TJ = 2 5 ° C di(rec) M/ dt - (A /µ s) VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C Q RR - (nC ) 400 I F = 24 A I F = 12A 200 1000 IF = 6 .0 A IF = 12 A 100 I F = 24 A IF = 6.0A 0 100 di f /d t - (A /µs) 1000 Fig. 16 - Typical Stored Charge vs. dif/dt 10 100 1000 di f /dt - (A /µ s) Fig. 17 - Typical di(rec)M /dt vs. dif /dt CPV363M4K 9 0% V ge Same t ype device as D.U.T. + Vg e Vce 430µF 80% of Vce D.U.T. Ic 90 % Ic 1 0% V ce Ic 5% Ic td (off) tf E off = Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf t1 ∫ t1 +5µ S Vce V ce icIcd tdt t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf G ATE VO LTA G E D .U .T. 1 0% +V g trr Q rr = Ic ∫ trr id Ic dtdt tx +V g tx 10% V cc 10 % Ir r V cc DUT V O LTA G E AN D C URR E NT V ce Vcc V pk Irr 10% Ic 9 0% Ic tr td( on) Ipk Ic DIO DE RE CO V E RY W AV E FO RM S 5% Vc e t1 ∫ t2 c e ieIc dt dt E on = VVce t1 t2 Er ec = DIO D E RE V E RS E RE C O V ER Y EN ER G Y t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr ∫ t4 VVd d idIc d t dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr CPV363M4K V g G ATE S IG N AL DE VICE UNDE R TE S T CURR EN T D .U .T. VO L TA G E IN D.U.T. CURR EN T IN D1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit D.U.T. L 10 00V V c* RL = 480V 4 X I C @25°C 0 - 480V 50V 60 00µ F 100 V Figure 19. Clamped Inductive Load Test Circuit Figure 20. Pulsed Collector Current Test Circuit CPV363M4K Notes: Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10µH, RG = 10Ω (Figure 19) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. Case Outline IMS-2 3.91 ( .154) 2X 62.43 (2.458) 7.87 (.310) 53.85 ( 2.120) 5.46 ( .215) 21.97 (.865) 1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 1 5 1 6 17 18 19 0.38 (.015) NO TE S: 1. Tolerance unless otherwis e spec ified ± 0.254 (.010) . 2. Controlling D imension: Inch. 3. Dimens ions ar e shown in Millimeter ( Inc hes) . 4. Term inal numbers are shown for refer enc e only. 3.94 (.155) 1.27 ( .050) 4.06 ± 0.51 (.160 ± .020) 5.08 (.200) 6X 1.27 (.050) 13X 2.54 (.100) 6X 3.05 ± 0.38 (.120 ± .015) 0.76 (.030) 13X 0.51 (.020) 6.10 (.240) IMS-2 Package Outline (13 Pins) D im e n s io n s in M illim e te rs a n d (In c h e s) WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change without notice. 2/98