PD -94912 IRG4PC40KDPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features Short Circuit Rated UltraFast: Optimized for high operating frequencies >5.0 kHz , and Short Circuit Rated to 10µs @ 125°C, VGE = 15V Generation 4 IGBT design provides tighter parameter distribution and higher efficiency than Generation 3 IGBT co-packaged with HEXFREDTM ultrafast, ultra-soft-recovery anti-parallel diodes for use in bridge configurations Industry standard TO-247AC package Lead-Free Short Circuit Rated UltraFast IGBT C VCES = 600V VCE(on) typ. = 2.1V G @VGE = 15V, IC = 25A E n-channel Benefits Generation 4 IGBTs offer highest efficiencies available HEXFRED diodes optimized for performance with IGBTs. Minimized recovery characteristics require less/no snubbing Designed to be a "drop-in" replacement for equivalent industry-standard Generation 3 IR IGBTs TO-247AC Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM tsc VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Short Circuit Withstand Time Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw. Max. Units 600 42 25 84 84 15 84 10 ± 20 160 65 -55 to +150 V A µs V W °C 300 (0.063 in. (1.6mm) from case) 10 lbfin (1.1 Nm) Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Min. Typ. Max. 0.24 6 (0.21) 0.77 1.7 40 Units °C/W g (oz) 1 12/29/03 IRG4PC40KDPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Min. Typ. Max. Units Collector-to-Emitter Breakdown Voltage 600 V Temperature Coeff. of Breakdown Voltage 0.46 V/°C Collector-to-Emitter Saturation Voltage 2.10 2.6 2.70 V 2.14 Gate Threshold Voltage 3.0 6.0 Temperature Coeff. of Threshold Voltage -13 mV/°C Forward Transconductance 7.0 14 S Zero Gate Voltage Collector Current 250 µA 3500 Diode Forward Voltage Drop 1.3 1.7 V 1.2 1.6 Gate-to-Emitter Leakage Current ±100 nA Conditions VGE = 0V, IC = 250µA VGE = 0V, IC = 1.0mA IC = 25A VGE = 15V See Fig. 2, 5 IC = 42A IC = 25A, TJ = 150°C VCE = VGE, IC = 250µA VCE = VGE, IC = 250µA VCE = 100V, IC = 25A VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 150°C IC = 15A See Fig. 13 IC = 15A, TJ = 150°C VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc t d(on) tr td(off) tf Eon Eoff Ets tsc Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time t d(on) tr t d(off) tf Ets LE Cies Coes Cres trr Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Qrr Diode Reverse Recovery Charge di(rec)M/dt Diode Peak Rate of Fall of Recovery During tb 2 Min. 10 Typ. Max. Units Conditions 120 180 IC = 25A 16 24 nC VCC = 400V See Fig.8 51 77 VGE = 15V 53 33 TJ = 25°C ns 110 160 IC = 25A, VCC = 480V 100 150 VGE = 15V, RG = 10Ω 0.95 Energy losses include "tail" 0.76 mJ See Fig. 9,10,14 1.71 2.3 µs VCC = 360V, TJ = 125°C VGE = 15V, RG = 10Ω , VCPK < 500V 52 TJ = 150°C, 37 IC = 25A, VCC = 480V ns 220 VGE = 15V, RG = 10Ω 140 Energy losses include "tail" 2.67 mJ See Fig. 11,14 13 nH Measured 5mm from package 1600 VGE = 0V 130 pF VCC = 30V See Fig. 7 55 = 1.0MHz 42 60 ns TJ = 25°C See Fig. 74 120 TJ = 125°C 14 IF = 15A 4.0 6.0 A TJ = 25°C See Fig. 6.5 10 TJ = 125°C 15 VR = 200V 80 180 nC TJ = 25°C See Fig. 220 600 TJ = 125°C 16 di/dt = 200Aµs 188 A/µs TJ = 25°C See Fig. 160 TJ = 125°C 17 www.irf.com IRG4PC40KDPbF 30 For both: Duty cycle: 50% TJ = 125°C Tsink = 90°C Gate drive as specified LOAD CURRENT (A) 25 20 Power Dissipation = 35 W Square wave: 60% of rated voltage 15 I 10 Ideal diodes 5 0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 TJ = 150 o C 10 TJ = 25 oC V GE = 15V 20µs PULSE WIDTH 1 0.1 1 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com 10 IC , Collector-to-Emitter Current (A) I C , Collector-to-Emitter Current (A) 100 TJ = 150°C TJ = 25°C 10 V CC = 50V 5µs PULSE WIDTH A 1 5 7 9 11 VGE, Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4PC40KDPbF 5.0 VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 50 40 30 20 10 0 25 50 75 100 125 150 TC , Case Temperature ( ° C) VGE = 15V 80 us PULSE WIDTH IC = 50 A 4.0 3.0 IC = 25 A IC =12.5 A 2.0 1.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 1 D = 0.50 0.20 0.1 0.10 PDM 0.05 t1 0.02 0.01 0.01 0.00001 t2 SINGLE PULSE (THERMAL RESPONSE) 0.0001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4PC40KDPbF 3000 VGE , Gate-to-Emitter Voltage (V) 2500 C, Capacitance (pF) 20 VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc 2000 Cies 1500 1000 500 0 Coes Cres 1 10 16 12 8 4 0 100 VCE , Collector-to-Emitter Voltage (V) Total Switching Losses (mJ) Total Switching Losses (mJ) 100 V CC = 480V V GE = 15V TJ = 25 ° C I C = 25A 2.00 0 10 20 30 40 RG, Gate Gate Resistance Resistance ((Ohm) Ω) RG Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 20 40 60 80 100 120 140 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 2.50 1.50 0 QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 3.00 VCC = 400V I C = 25A 50 RG = 10Ω Ohm VGE = 15V VCC = 480V 10 IC = 50 A IC = 25 A IC = 12.5 A 1 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4PC40KDPbF 1000 RG = Ohm 10Ω T J = 150 °C VCC = 480V VGE = 15V I C , Collector-to-Emitter Current (A) Total Switching Losses (mJ) 8.0 6.0 4.0 2.0 0.0 0 10 20 30 40 VGE = 20V oC T J = 125 125°C 100 10 1 50 SAFE OPERATING AREA 1 10 100 1000 VCE , Collector-to-Emitter Voltage (V) I C , Collector-to-emitter Current (A) Fig. 12 - Turn-Off SOA Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Instantaneous Forward Current - I F (A) 100 10 TJ = 150°C TJ = 125°C TJ = 25°C 1 0.8 1.2 1.6 2.0 2.4 Forward Voltage Drop - V FM (V) Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com 100 100 IRG4PC40KDPbF VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C 80 I IRRM - (A) t rr - (ns) I F = 30A I F = 30A 60 I F = 15A IF = 15A 10 I F = 5.0A 40 I F = 5.0A 20 100 di f /dt - (A/µs) 1 100 1000 Fig. 14 - Typical Reverse Recovery vs. dif/dt di f /dt - (A/µs) 1000 Fig. 15 - Typical Recovery Current vs. dif/dt 800 1000 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C di(rec)M/dt - (A/µs) 600 Q RR - (nC) IF = 30A 400 I F = 15A IF = 5.0A I F = 5.0A I F = 15A I F = 30A 200 0 100 di f /dt - (A/µs) Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com 1000 100 100 di f /dt - (A/µs) 1000 Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7 IRG4PC40KDPbF 90% Vge Same type device as D.U.T. +Vge Vce 430µF 80% of Vce D.U.T. Ic 90% Ic 10% Vce Ic 5% Ic td(off) tf Eoff = Fig. 18a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf ∫ t1+5µS Vce icIcdtdt Vce t1 t1 t2 Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf GATE VOLTAGE D.U.T. 10% +Vg trr Ic Qrr = tx DUT VOLTAGE AND CURRENT Vce 10% Ic 90% Ic tr td(on) 10% Irr Ipk Vpk Vcc Irr Ic DIODE RECOVERY WAVEFORMS 5% Vce t1 ∫ t2 VceieIcdtdt Eon = Vce t1 t2 DIODE REVERSE RECOVERY ENERGY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 ∫ +Vg 10% Vcc Vcc trr id Ic dtdt tx ∫ t4 Erec = Vd VdidIcdt dt t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4PC40KDPbF Vg GATE SIGNAL DEVICE UNDER TEST CURRENT D.U.T. VOLTAGE IN D.U.T. CURRENT IN D1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit D.U.T. L 1000V Vc* RL= 0 - 480V 480V 4 X IC @25°C 50V 6000µF 100V Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4PC40KDPbF Notes: Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10µH, RG= 10Ω (figure 19) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. TO-247AC Package Outline Dimensions are shown in millimeters (inches) -D- 3.65 (.143) 3.55 (.140) 15.90 (.626) 15.30 (.602) -B- -A- 0.25 (.010) M D B M 2.50 (.089) 1.50 (.059) 4 5.50 (.217) 20.30 (.800) 19.70 (.775) 2X 1 2 5.30 (.209) 4.70 (.185) NOTES: 5.50 (.217) 4.50 (.177) 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH. 3 CONFORMS TO JEDEC OUTLINE TO-247-AC. 3 -C- 14.80 (.583) 14.20 (.559) 2.40 (.094) 2.00 (.079) 2X 5.45 (.215) 2X 4.30 (.170) 3.70 (.145) 0.80 (.031) 3X 0.40 (.016) 1.40 (.056) 3X 1.00 (.039) 0.25 (.010) M 2.60 (.102) 2.20 (.087) C A S 3.40 (.133) 3.00 (.118) LEAD ASSIGNMENTS Hexfet IGBT 1 -LEAD GateASSIGNMENTS 1 - Gate 1 GATE 2 - Drain 2 - Collector 2 - DRAIN 3 - Source 3 - Emitter 3 - SOURCE 4 - Drain 4 - DRAIN4 - Collector TO-247AC Part Marking Information EXAMPLE: T HIS IS AN IRFPE30 WIT H ASSEMBLY LOT CODE 5657 ASSEMBLED ON WW 35, 2000 IN THE AS SEMBLY LINE "H" Note: "P" in assembly line position indicates "Lead-Free" INT ERNATIONAL RECT IFIER LOGO ASSEMBLY LOT CODE PART NUMBER IRFPE30 56 035H 57 DAT E CODE YEAR 0 = 2000 WEEK 35 LINE H Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.12/03 10 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/